

## **Epreuve de Sciences Industrielles A**

#### Durée 5 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

# L'usage de calculatrices est interdit Aucun document n'est autorisé

### Composition du sujet :

- 1 cahier de 20 pages de texte numérotées de 1 à 20 et de 6 pages d'annexes.
- 1 cahier réponse de 25 pages à rendre à la fin de l'épreuve.

#### Consignes:

Il est demandé au candidat de formuler toutes les hypothèses qu'il jugera nécessaires pour répondre aux questions posées.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Le traitement d'une partie dans sa continuité sera valorisée par rapport à un traitement ponctuel de quelques questions.

#### Protection:

Ce sujet utilise comme support d'étude un système développé par la **DGA** en collaboration avec le groupe **Bosch-Rexroth**. Les éléments d'information extraits des documents fournis dans le présent sujet et utilisés avec leur permission, restent la propriété de la **DGA** et du groupe **Bosch-Rexroth**.

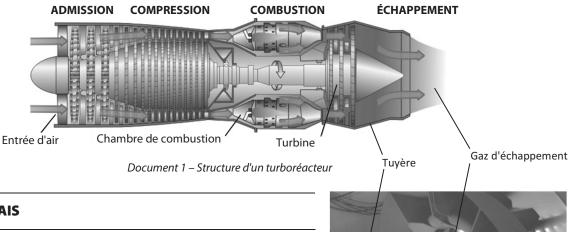
L'autorisation d'utilisation de ces informations n'est valable que pour ce sujet de concours.

# TUYÈRE À OUVERTURE VARIABLE POUR BANC D'ESSAIS DE TURBORÉACTEURS

Les propulseurs utilisés dans les applications militaires ou civiles subissent, avant leur mise en service, des tests de certification visant à contrôler leur bon fonctionnement et le respect des normes de sécurité.

Ces tests consistent à simuler au sol les conditions de vol subies par le propulseur et à observer les réactions de celui-ci consécutives à des commandes de pilotage.

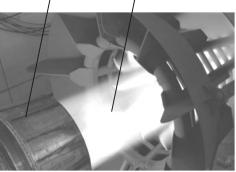
La **DGA** (Direction Générale de l'Armement) dispose dans son centre d'essais des propulseurs, situé à Saclay, de bancs d'essais dédiés à la certification et à la mise au point de différents types de propulseurs d'avions ou de missiles.




Avion de combat Rafale propulsé par deux moteurs Snecma M88

#### PRINCIPE DE FONCTIONNEMENT D'UN TURBORÉACTEUR

Un turboréacteur est un propulseur fonctionnant sur le principe d'action-réaction. La différence de vitesse entre l'air entrant et les gaz produits entraîne une variation de quantité de mouvement et donc un effort de poussée (voir document 1 ci-dessous).


L'air ambiant est conditionné à l'entrée puis comprimé à l'aide de compresseurs centrifuges à étages multiples. Le carburant est alors injecté dans la chambre de combustion, mélangé à l'air puis enflammé, ce qui produit ainsi l'énergie permettant l'accélération des gaz au passage de la tuyère d'éjection à ouverture variable. Leur passage dans une turbine permet en outre d'entraîner les étages de compression.



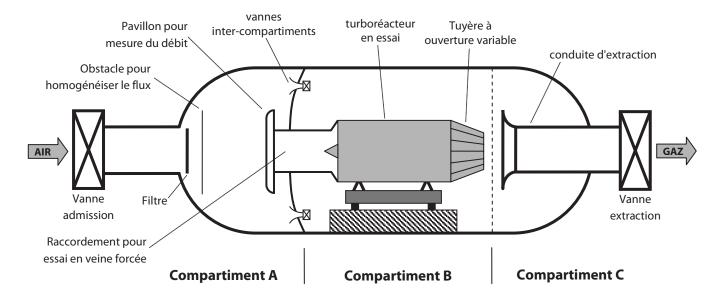
#### **LE BANC D'ESSAIS**

Un banc d'essais de turboréacteur est constitué de trois compartiments (voir *document 2* page suivante).

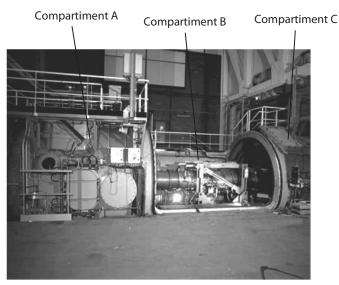
Le premier compartiment (A) est alimenté par une soufflerie et a pour fonction de conditionner le flux d'air en amont de la turbomachine testée. Il est ainsi possible de contrôler le débit, la température et la pression de l'air en admission.



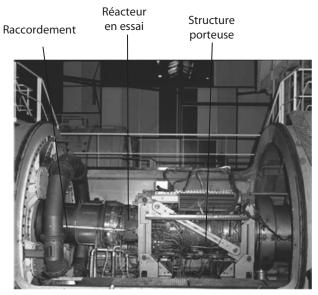
Propulseur en cours d'essais


Le deuxième compartiment (B) contient le propulseur à tester. Celui-ci est maintenu par une structure porteuse permettant entre autres les mesures des efforts de poussée. Il est séparé du compartiment (A) par une cloison étanche munie d'un orifice permettant le passage de l'air calibré. Le flux d'air peut alors être laissé libre en amont du réacteur ou guidé par un raccordement jusqu'à l'entrée de celui-ci, permettant ainsi des essais dits en "veine forcée".

Le troisième compartiment (C) permet la collecte et l'évacuation des gaz produits lors de la combustion.


La pression à l'intérieur du compartiment B est régulée afin de simuler différentes conditions d'altitude.

Des vannes inter-compartiments permettent d'assurer une circulation d'air autour du réacteur afin de simuler le refroidissement externe du moteur en fonctionnement.

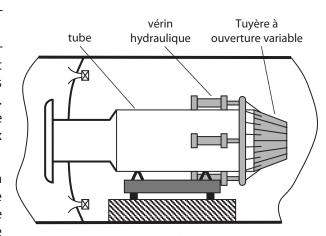

La pression du compartiment A est ajustable de 0,05 à 3 bar. Celle des compartiments B et C de 0,05 à 1,05 bar. La température d'alimentation du compartiment A est variable de -56°C à +150°C. La capacité de ventilation est réglable de 27 à 40 kg/s. En réglant ces différents paramètres, il est possible de simuler sur ce type de banc l'ensemble des conditions d'utilisation d'un turboréacteur.



Document 2 – Structure d'un banc d'essais



Vue d'ensemble du banc d'essais (compartiment B ouvert)




Vue du compartiment B

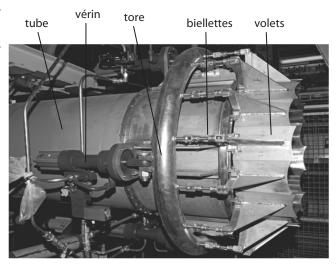
#### CALIBRATION DU BANC - RÉACTEUR SIMULÉ

Un banc d'essais nécessite pour fonctionner correctement une phase de calibration permettant d'affiner les réglages utilisés lors des tests et d'étalonner les appareils de mesures. On s'assure notamment dans cette phase que le compartiment A possède un comportement conforme aux besoins des tests.

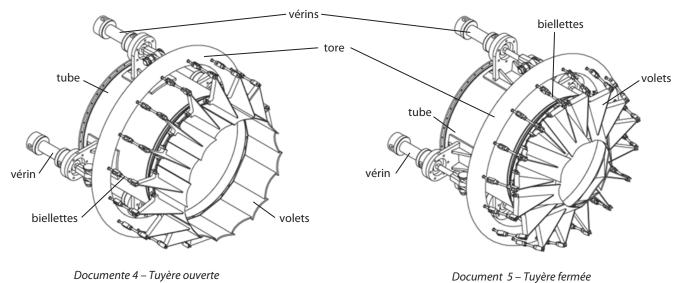
Les coûts en carburant et en matériel liés à l'utilisation d'un turboréacteur sont tels que, pour ces phases de calibration, les ingénieurs de la DGA ont imaginé une solution consistant à remplacer le propulseur réel par une structure simulant sa présence (voir document 3 ci-contre).



Document 3 – Réacteur simulé (compartiment B)


Cette structure est composée d'un tube représentant le corps du réacteur et d'une tuyère à ouverture variable actionnée par quatre vérins hydrauliques et permettant de faire varier la vitesse de l'air éjecté. On notera que dans ce cas, il n'y a pas de combustion interne au dispositif. Le tube est fixé sur la structure porteuse réelle avec les mêmes points d'encrage que le propulseur et est raccordé directement à la veine forcée.

#### **TUYÈRE A OUVERTURE VARIABLE**


La tuyère à ouverture variable montée sur le tube, en aval de l'écoulement, a pour fonction de faire varier la section de la veine de fluide en sortie de tube.

La solution imaginée consiste à disposer seize volets articulés sur la périphérie du tube qui permettent ainsi de réduire la section de passage du fluide (voir documents 4 et 5 ci-dessous). Ces volets sont mis en mouvement par seize biellettes toutes identiques reliées à une pièce de forme torique (tore) elle-même mise en translation par quatre vérins hydrauliques répartis régulièrement autour du tube.

Les commandes de ces vérins sont synchronisées et asservies en position. La DGA a confié la réalisation de cette commande à la société **Bosch-Rexroth**.



Tuyère à ouverture variable



Tuyère à ouverture variable Page 3 Banque PT – SIA 2011

La consigne d'ouverture de la tuyère est élaborée au niveau de la console de pilotage. Elle est transmise à des modules de commande spécifiques à chaque vérin. Ceux-ci sont pilotés par des servo-distributeurs hydrauliques à commande électrique. Un contrôle de la position est effectué par un capteur à magnétostriction intégré dans le corps du vérin. Les caractéristiques de ces composants sont fournies en annexe 2.

#### **OBJECTIFS DE L'ÉTUDE PROPOSÉE**

On se propose dans ce sujet de valider les solutions choisies par les concepteurs vis-à-vis des performances attendues listées au cahier des charges.

Dans cette optique, après une lecture attentive du sujet (environ 20 minutes), il est proposé au candidat une étude articulée autour de cinq parties indépendantes (les durées indiquées correspondent au poids relatif de chacune d'elles) :

Partie A: Analyse fonctionnelle et structurelle (20 min)

Partie B: Modélisation de la chaîne fonctionnelle réalisant la fonction de service (2h)

Partie C : Synthèse de la commande d'un vérin (40 min)

Partie D: Validation de l'architecture mécanique de la structure réalisant la chaîne d'énergie (1h)

Partie E : Validation de la commande synchronisée des vérins (40 min)

## PARTIE A -

## ANALYSE FONCTIONNELLE ET STRUCTURELLE

**Objectif :** Cette partie a pour objectif de compléter une description fonctionnelle interne du système afin de préciser l'organisation structurelle et de mettre en évidence les performances qui feront l'objet des études de validation proposées dans la suite du sujet.

On propose en annexe 1 les diagrammes SADT de niveau A-0 et A0 de la tuyère.

#### **Question 1**

À partir de la présentation du système et des diagrammes fournis en annexe 1, compléter le diagramme SADT de niveau A3 ébauché sur le cahier réponse.

Les actionneurs utilisés sont des vérins hydrauliques double effet. Ils sont pilotés par des servo-distributeurs à commande électrique.

On donne sur le cahier réponse une ébauche du schéma hydraulique de câblage d'un vérin.

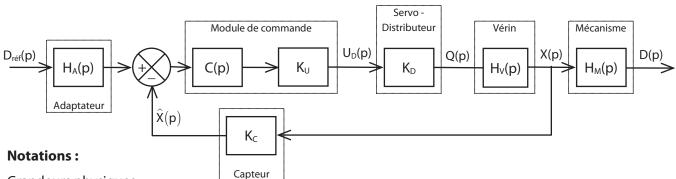
#### **Question 2**

Compléter le schéma de câblage hydraulique du vérin en reliant les composants. Préciser la désignation et/ou la fonction des éléments indiqués.

#### **Question 3**

Après lecture du diagramme FAST proposé sur le cahier réponse, indiquer les éléments réalisant les différentes fonctions du niveau le plus bas de la description.

# MODÉLISATION DE LA CHAÎNE FONCTIONNELLE RÉALISANT LA FONCTION DE SERVICE "FAIRE VARIER LE DIAMÈTRE DE LA VEINE DE FLUIDE"


**Objectif :** Cette partie a pour objectif de proposer un modèle de comportement pour les éléments constitutifs de la chaîne fonctionnelle réalisant la fonction de service. Cette modélisation permettra de valider une partie des performances attendues et de préparer la synthèse du correcteur pour la partie suivante.

Dans l'ensemble de cette partie, nous n'étudierons qu'une seule des 4 chaînes fonctionnelles constituant le système complet. Nous ferons l'hypothèse que les chaînes sont parfaitement identiques et que la charge est également répartie sur chacun des 4 vérins.

On donne ci-dessous un extrait du cahier des charges relatif à la fonction de service.

| Fonction de service      | Critères d'appréciation                            | Niveau                            |
|--------------------------|----------------------------------------------------|-----------------------------------|
| Faire varier le diamètre | <ul> <li>Diamètre de la veine de fluide</li> </ul> | de 400 à 600 mm                   |
| de la veine de fluide    | Rapidité                                           |                                   |
|                          | - Temps de réponse à 5%                            | 4 s pour passer de 600 à 400 mm   |
|                          | Précision                                          |                                   |
|                          | - Erreur statique sur le diamètre                  | 0 mm                              |
|                          | - Erreur de trainage sur le diamètre               | 2 mm pour une consigne de 50 mm/s |

Le schéma-bloc adopté pour la modélisation de cette chaîne est le suivant :



**Grandeurs physiques:** 

 $D_{\text{réf}}(p):$  diamètre de consigne de la section d'ouverture de la tuyère

 $U_D(p)$ : tension de commande du servo-distributeur hydraulique

Q(p) : débit volumique de commande du vérin

X(p) : déplacement de la tige du vérin

X(p) : estimation du déplacement par le capteur
 D(p) : diamètre de la section d'ouverture de la tuyère

### Fonctions de transfert et gains :

H<sub>A</sub>(p): fonction de transfert du bloc d'adaptation permettant de traduire la consigne

C(p) : fonction de transfert du correcteur de la chaîne de commande

 $K_U$ : gain du convertisseur numérique analogique

K<sub>D</sub>: gain du servo-distributeur hydraulique

 $K_C$ : gain du capteur de déplacement

H<sub>V</sub>(p): fonction de transfert du vérin hydraulique

 $H_M(p)$ : fonction de transfert du mécanisme de transmission de mouvement de la tige jusqu'aux volets

#### Conventions d'écriture et hypothèses :

Par convention, nous noterons F(p) l'image par la transformation de Laplace d'une fonction du temps f(t) où p symbolise la variable de Laplace.

En l'absence de précisions complémentaires, le comportement des composants sera supposé en première approximation linéaire, continu et invariant. On se place par ailleurs dans l'hypothèse des conditions d'Heaviside validées.

Les données fournies par le capteur sont numériques, tout comme les signaux traités dans la chaîne d'information. La période d'échantillonnage est suffisamment faible pour être négligeable devant la dynamique globale du système. Les différentes variables seront donc toutes considérées comme des fonctions continues du temps.

#### **B1 – MODÉLISATION DU COMPORTEMENT CINÉMATIQUE DU MÉCANISME**

**Objectif :** Il s'agit dans un premier temps de valider la linéarité du comportement du mécanisme de transformation de mouvement en établissant la loi de comportement cinématique et d'établir les performances de la chaîne de commande des vérins permettant le respect du cahier des charges.

L'annexe 3 montre le mécanisme de transformation du déplacement x(t) d'un vérin en rotation  $\alpha(t)$  d'un volet dans les positions extrêmes : tuyère pleine ouverture (figure 4) et tuyère ouverture réduite (figure 5).

#### Notations et hypothèses :

On suppose que le mécanisme étudié admet le plan  $(O,\vec{x}_1,\vec{y}_1)$  comme plan de symétrie géométrique.

Le modèle cinématique adopté est précisé par le schéma cinématique de la figure 6. Les données géométriques et une figure de changement de bases sont fournies avec la figure 7. La position initiale est définie par x(0) = 0 mm et  $\alpha(0) = 0$ °.

#### **Question 4**

Écrire la relation vectorielle traduisant la fermeture géométrique de la chaîne de solides. En déduire les deux équations scalaires en projection dans la base  $(\vec{x}_1, \vec{y}_1)$ .

#### **Question 5**

En éliminant l'inconnue  $\beta$ , exprimer  $\alpha$  en fonction de x. Puis le diamètre D de la veine fluide en fonction de  $\alpha$  et D<sub>0</sub> le diamètre initial de la tuyère.

#### **Question 6**

On donne figure 8 le tracé de la fonction D(x) déduite de la question précédente. Peut-on linéariser cette fonction sur cet intervalle ? Si oui, proposer une expression affine de D en fonction de x.

#### **Question 7**

À partir du résultat de la question précédente, déduire du cahier des charges relatif à la fonction de service les niveau des critères à valider pour la commande des vérins (course, temps de réponse, précision).

#### **B2 – MODÉLISATION DU COMPORTEMENT DU SERVO-DISTRIBUTEUR HYDRAULIQUE**

**Objectif :** Il s'agit ici d'établir un modèle de comportement du servo-distributeur et de valider les choix des composants hydrauliques vis-à-vis du cahier des charges.

La fonction de distribution de l'énergie est assurée par un servo-distributeur dont les caractéristiques principales sont données en annexe 2.

#### **Question 8**

À partir de la courbe de débit et des caractéristiques fournies, proposer une valeur numérique pour le gain K<sub>D</sub> du servo-distributeur (on négligera pour cela la légère non linéarité perceptible sur la courbe).

#### **Question 9**

Calculer la vitesse maximale  $V_{max}$  (en m/s) de déplacement de la tige du vérin. Vérifier alors que les performances maximales des composants hydrauliques choisis sont compatibles avec les exigences de rapidité spécifiées au cahier des charges.

### **B3 - MODÉLISATION DU COMPORTEMENT DU CAPTEUR DE DÉPLACEMENT**

**Objectif :** Établir un modèle de comportement du capteur de déplacement et valider les performances du capteur vis-à-vis du cahier des charges.

Le vérin hydraulique inclut un capteur de position fonctionnant sur le principe de la magnétostriction et dont les principales caractéristiques sont données en annexe 2.

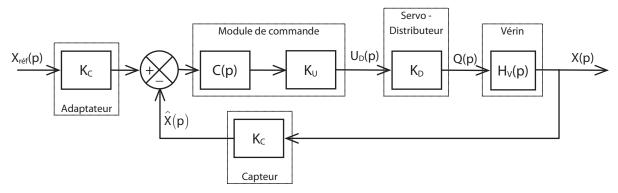
Le signal fourni par ce capteur est numérique. La mesure s'effectue comme sur un codeur incrémental par incrémentation des tops émis par le composant. L'estimation  $\hat{x}(t)$  du déplacement x(t) correspond au nombre de tops émis lors de ce déplacement.

#### **Question 10**

En tenant compte de la résolution du capteur, donner la valeur numérique du gain K<sub>C</sub> du capteur.

#### **Question 11**

Donner la valeur maximale prise par  $\hat{x}(t)$  lors du déplacement du vérin. Combien de bits sont nécessaires pour coder cette information ? Est-ce compatible avec le capteur choisi ?


#### **Question 12**

Quelle est la spécificité du code Gray ? En quoi est-elle intéressante pour une mesure par incrémentation ?

#### **B4 – MODÉLISATION DU COMPORTEMENT DU VÉRIN – HYPOTHÈSE FLUIDE INCOMPRESSIBLE**

**Objectif :** Il s'agit dans cette partie de proposer un premier modèle du comportement du vérin en adoptant une hypothèse de fluide incompressible.

Le résultat de la partie précédente nous permet de réduire l'étude à la commande en position du vérin. Nous adopterons pour cela le schéma-bloc suivant où  $X_{réf}(p)$  représente la consigne de position du vérin équivalente à la consigne portant sur le diamètre de la veine de fluide :



Dans toute cette partie, on prendra  $K_{II} = 5.10^{-4} \text{ V}$ .

Nous considèrerons par ailleurs une action proportionnelle du correcteur telle que  $C(p) = K_p$ .

Nous nous proposons en première approximation de considérer le fluide utilisé (huile) comme étant incompressible. Cette hypothèse induit la relation suivante :

$$q(t) = S \cdot \frac{dx(t)}{dt}$$
, où S représente la section utile du vérin en sortie de tige.

#### **Question 13**

Donner l'expression de la fonction de transfert du vérin  $H_v(p) = \frac{X(p)}{Q(p)}$ .

#### **Question 14**

Donner alors l'expression de la fonction de transfert en boucle fermée  $H_{BF}(p) = \frac{X(p)}{X_{ref}(p)}$ . La mettre sous la

forme 
$$F(p) = \frac{K}{1+T.p}$$
 en précisant les expressions de K et de T.

#### **Question 15**

Quelle est alors l'écart de position consécutif à une consigne de 100 mm ? Est-ce compatible avec la performance spécifiée dans le cahier des charges ?

#### **Question 16**

Proposer un réglage du correcteur permettant de valider la performance de rapidité.

#### B5 - MODÉLISATION DU COMPORTEMENT DU VÉRIN - HYPOTHÈSE FLUIDE COMPRESSIBLE

**Objectif :** Il s'agit ici de proposer un modèle plus affiné du comportement du vérin en tenant compte de la compressibilité du fluide et du comportement dynamique du mécanisme.

L'hypothèse d'incompressibilité formulée dans la partie précédente conduit à un modèle cinématique qui ne tient pas compte des causes du mouvement. Pour rendre compte du comportement dynamique du système il faut modifier le modèle de comportement du vérin en tenant compte de la compressibilité du fluide.

L'évolution du débit est alors une fonction du déplacement mais aussi de la pression sous la forme de la relation suivante :

$$\begin{bmatrix}1\end{bmatrix} \qquad q(t) = S. \frac{dx(t)}{dt} + \frac{V_0}{B}. \frac{d\sigma(t)}{dt} \text{ , avec} \\ \begin{vmatrix}\sigma(t) : \text{pression utile dans le vérin. On notera }\Sigma(p) \text{ sa transformée} \\ V_0 : \text{demi volume de fluide contenu dans le vérin} \\ B : \text{coefficient de compressibilité du fluide} \end{aligned}$$

La pression utile induit l'effort développé par le vérin que nous noterons F<sub>v</sub> tel que :

[2]  $F_v(p) = S.\Sigma(p)$ , où S représente la section utile du vérin en sortie de tige.

C'est cette action qui permet la mise en mouvement du mécanisme et par conséquent celui des volets.

#### B5.1 – Modélisation du comportement dynamique du mécanisme

**Objectif :** On cherche à déterminer la masse équivalente  $M_{eq}$ , ramenée à la tige du vérin, du mécanisme de transformation de mouvement actionné par un vérin, c'est-à-dire un mécanisme réduit au quart de l'ensemble composé du tore, des 16 biellettes et des 16 volets.

Le calcul sera effectué sur un seul des ensembles bielle-volet puis multiplié par 4 pour obtenir le résultat valable pour un vérin. A l'inverse on considérera qu'un vérin déplace un quart de la masse du tore. On adopte pour ce mécanisme le modèle utilisé pour la partie B1 et donné par son schéma cinématique sur la figure 6 de l'annexe 3.

#### Notations et hypothèses :

On suppose que le mécanisme étudié admet le plan  $(0,\vec{x}_1,\vec{y}_1)$  comme plan de symétrie géométrique. On néglige la masse des biellettes devant celle du tore et des volets. Les solides sont supposés homogènes. Le référentiel associé au bâti **1** est supposé galiléen.

Le modèle cinématique adopté est précisé par le schéma cinématique de la figure 6. Les données géométriques et une figure de changement de bases sont fournies avec la figure 7.

Avant de rechercher la masse équivalente, on se propose d'estimer les caractéristiques d'inertie d'un volet. Le modèle à géométrie simplifiée donné par la figure 9 de l'annexe 4 fait apparaître que le volet peut être décrit par l'assemblage de 3 volumes élémentaires numérotés 1, 2 et 3. On suppose que la contribution du volume 3 aux caractéristiques d'inertie d'un volet est négligeable.

#### **Question 17**

Déterminer, avec les hypothèses précédentes, le moment d'inertie par rapport à l'axe  $(C, \vec{z})$   $I_{(V,Cz)}$  d'un volet en fonction de la masse volumique  $\rho$  et des caractéristiques géométriques H, L, d, a et e.

Pour la recherche de la masse équivalente, on notera  $M_t$  la masse du solide **3**.  $M_t$  représente la masse de la tige du vérin et un quart de la masse du tore.

#### **Question 18**

Exprimer l'énergie cinétique galiléenne de l'ensemble de solides (3+4+5) en fonction de  $M_t$ ,  $I_{(v,c_2)}$ ,  $\dot{\alpha}$  et  $\dot{x}$ .

#### **Question 19**

La figure 11 de l'annexe 4 donne la variation de l'angle  $\alpha$  en fonction de x obtenue à la question 5. On cherche à linéariser la loi de variation sous la forme  $\alpha = -k_1 \cdot x$ . Donner la valeur de  $k_1$  en précisant son unité.

#### **Question 20**

Après avoir précisé la méthode utilisée pour définir la masse équivalente recherchée, exprimer la masse équivalente  $M_{eq}$  en fonction de  $M_{tr}$   $I_{(V,Cz)}$  et  $k_1$ .

#### **Question 21**

Faire l'application numérique pour  $M_t = 22 \text{ kg et } I_{(V,Cz)} = 8.10^4 \text{ kg.mm}^2$  .

On donne sur le cahier réponse (question 22) un schéma-bloc modélisant le comportement du vérin avec l'hypothèse d'un fluide compressible. Sur ce schéma, V(p) représente l'image par la transformation de Laplace de la vitesse de translation v(t) de la tige du vérin.

En considérant les actions de pesanteur négligeables et en se plaçant dans une phase de test à vide (sans flux d'air), l'application des lois de la dynamique donne la relation suivante :

$$[3] \quad F_{_{V}}\!\left(t\right) \!=\! M_{_{eq}}.\frac{d^2x\!\left(t\right)}{dt^2}$$

#### **Question 22**

A partir des équations [1], [2] et [3], compléter le schéma-bloc du document réponse en indiquant les fonctions de transferts de chaque bloc.

#### B5.2 - Prise en compte de l'action de l'air sur les volets

**Objectif**: On cherche à déterminer l'action mécanique résistante équivalente  $F_R$ , ramenée à la tige du vérin, représentant les actions mécaniques de l'air sur les volets associés à un vérin, c'est-à-dire 4 des 16 volets.

Le calcul sera effectué sur un seul des ensembles bielle-volet puis multiplié par 4 pour obtenir le résultat valable pour un vérin. On adopte pour ce mécanisme le modèle utilisé pour la partie B1 et donné par son schéma cinématique sur la figure 6 de l'annexe 3.

#### Notations et hypothèses :

On suppose que le mécanisme étudié admet le plan  $(O, \vec{x}_1, \vec{y}_1)$  comme plan de symétrie géométrique. On néglige la masse des biellettes devant celle du tore et des volets. Les liaisons sont supposées parfaites. Le référentiel associé au bâti **1** est supposé galiléen.

Le modèle cinématique adopté est précisé par le schéma cinématique de la figure 6. Les données géométriques et une figure de changement de bases sont fournies avec la figure 7.

L'action de l'air sur un volet est assimilée à un glisseur  $\mathcal{F}(\text{air} \to 5) = \begin{Bmatrix} F_a \cdot \vec{y}_5 \\ \vec{0} \end{Bmatrix}_K$  dont l'axe central passe par le centre de poussée K tel que  $\overrightarrow{CK} = c.\vec{x}_s$ .

L'action de la pression d'huile sur la tige du vérin est assimilée à un glisseur  $\mathcal{F}(p\rightarrow 3) \equiv \begin{cases} F_v.\vec{x}_3 \\ \vec{0} \end{cases}_A$  dont l'axe central passe par le centre de poussée A.

#### **Question 23**

Exprimer la puissance galiléenne développée par les actions mécaniques extérieures et intérieures à l'ensemble de solides (3+4+5) en fonction de  $F_{a_r}$ ,  $F_{v_r}$ ,  $c_r$ ,  $\dot{\alpha}$  et  $\dot{x}$ . Montrer qu'elle peut se mettre sous la forme :  $\left(F_v - F_{eq}\right).\dot{x}$  où  $F_{eq}$  représente l'action équivalente de l'air sur un seul volet ramenée sur l'axe du vérin. On donnera alors l'expression de  $F_{eq}$  en fonction  $F_{a_r}$ , c et  $k_1$ .

#### **Question 24**

En première approximation, on suppose que  $F_a$  est de la forme  $F_a = -k_2 \cdot \alpha$ . Exprimer  $F_R$  en fonction c,  $k_1$ ,  $k_2$  et x. On rappelle que  $F_R$  est l'action mécanique résistante équivalente pour quatre volets. Mettre le résultat sous la forme  $F_R = K_F \cdot x$  et donner l'expression de  $K_F \cdot x$ .

#### **Question 25**

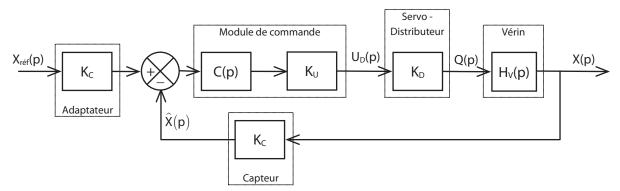
Calculer la valeur numérique de  $K_F$  avec  $k_2 = \frac{15}{4}.10^3$  N/rad et c = 200 mm.

#### **Ouestion 26**

Écrire le théorème de la résultante dynamique appliquée au solide **3** dans son mouvement par rapport à **1** en projection sur  $\vec{x}_1$ , comme s'il était seul en remplaçant l'ensemble des quatre groupes de solides **4** et **5** par les caractéristiques équivalentes déterminées précédemment.

#### **Question 27**

Compléter le schéma-bloc du document réponse en indiquant les fonctions de transfert de chaque bloc.


#### **Question 28**

Donner l'expression de la fonction de transfert du vérin ainsi modélisé  $H_{V}(p) = \frac{X(p)}{Q(p)}$ .

On donnera le résultat sous la forme suivante :  $H_V(p) = \frac{K_V}{p(1+a_2.p^2)}$  en précisant les expressions de  $K_V$  et  $a_2$ .

#### B5.3 - Validation du modèle de comportement du vérin

Afin de valider le modèle établi, on se propose d'étudier le comportement en boucle fermée de la chaîne fonctionnelle de commande du vérin. On rappelle ci-dessous le schéma-bloc retenu et on considérera une correction proportionnelle telle que  $C(p) = K_p$ .



#### **Question 29**

Donner l'expression de la forme canonique de la fonction de transfert en boucle fermée  $H_{BF}(p) = \frac{X(p)}{X_{ref}(p)}$ . On donnera le résultat en fonction de  $K_C$ ,  $K_D$ ,  $K_D$ ,  $K_D$ ,  $K_D$ ,  $K_V$  et  $a_2$ .

#### **Question 30**

Par application du critère Routh, discuter de la stabilité du système ainsi modélisé. Conclure sur le modèle de comportement du vérin établi en question 28.

#### B5.4 – Prise en compte d'un débit de fuite

Pour pallier le problème de stabilité du modèle précédemment établi, une solution possible consiste à introduire un débit de fuite entre les deux chambres du vérin. Celui-ci a pour effet de réduire artificiellement le débit réel entrant dans le vérin en fonction de la pression utile. Ce débit vaut alors :  $q(t) - \delta . \sigma(t)$  où  $\delta$  est le coefficient de débit de fuite.

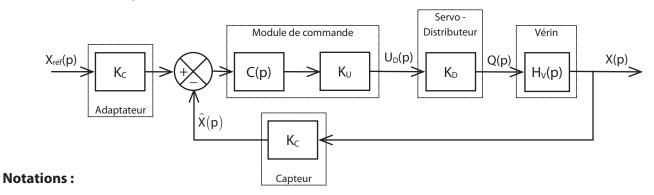
#### **Question 31**

Proposer une modification du schéma-bloc donné sur le cahier réponse afin de prendre en compte le débit de fuite entre les chambres du vérin.

#### **Question 32**

Donner l'expression de la fonction de transfert du vérin ainsi modélisé  $H_v(p) = \frac{X(p)}{Q(p)}$ .

On donnera le résultat sous la forme suivante :  $H_v(p) = \frac{K_v}{1 + a_1 \cdot p + a_2 \cdot p^2 + a_3 \cdot p^3}$  en précisant les expressions de  $K_v$ ,  $a_1$ ,  $a_2$  et  $a_3$ .


# SYNTHÈSE DU CORRECTEUR DE LA COMMANDE EN POSITION D'UN VÉRIN

**Objectif :** Cette partie a pour objectif de choisir et de régler le correcteur de la chaîne fonctionnelle assurant la fonction de service.

On donne ci-dessous un extrait du cahier des charges relatif à la fonction de service :

| Fonction de service  | Critères d'appréciation            | Niveau                            |
|----------------------|------------------------------------|-----------------------------------|
| FS                   | <ul> <li>Rapidité</li> </ul>       |                                   |
| Faire varier le      | - Temps de réponse à 5%            | 4 s pour le déplacement maximal   |
| diamètre de la veine | <ul> <li>Précision</li> </ul>      |                                   |
| de fluide            | - Erreur statique pour le vérin    | 0 mm                              |
|                      | - Erreur de trainage pour le vérin | 1 mm pour une consigne de 25 mm/s |
|                      | <ul> <li>Stabilité</li> </ul>      |                                   |
|                      | - Marges de stabilité              | Marge de gain > 15 dB             |
|                      |                                    | Marge de phase > 45°              |

Afin de simplifier l'étude et en reprenant les résultats de la partie B, nous adopterons dans cette partie le schéma-bloc suivant pour modéliser la chaîne fonctionnelle :



#### **Grandeurs physiques:**

 $X_{ref}(p):$  diamètre de consigne de la section d'ouverture de la tuyère  $U_D(p):$  tension de commande du servo-distributeur hydraulique

Q(p) : débit de fluide fourni par le servo-distributeur au vérin

X(p) : déplacement de la tige du vérin

X(p) : estimation du déplacement par le capteur

#### Fonctions de transfert et gains :

C(p) : fonction de transfert du correcteur de la chaîne de commande

 $K_U$ : gain du convertisseur numérique analogique  $K_D$ : gain du servo-distributeur hydraulique

K<sub>C</sub>: gain du capteur de déplacement

H<sub>V</sub>(p): fonction de transfert du vérin hydraulique

**Conventions d'écriture et hypothèses :** Nous reprenons l'ensemble des conventions et hypothèses usuelles listées au début de la partie B.

**Valeurs numériques :** Indépendamment des résultats obtenus dans la partie B, nous prendrons les valeurs numériques suivantes :  $K_c = 2.10^5 \text{ m}^{-1}$  ;  $K_u = 5.10^{-4} \text{ V}$  et  $K_D = 10^{-5} \text{ m}^3.\text{s}^{-1}.\text{V}^{-1}$ 

#### C1 – MODÉLISATION DE LA BOUCLE OUVERTE NON CORRIGÉE

**Objectif :** Il s'agit ici de proposer un modèle du comportement en boucle ouverte non corrigée de la chaîne fonctionnelle.

On donne sur le document réponse (question 33) la représentation dans le plan de Bode de la fonction de transfert  $H_V(p)$ .

#### **Question 33**

Proposer à partir de ce tracé, une expression pour la fonction de transfert  $H_V(p)$ . On justifiera la réponse en traçant les diagrammes asymptotiques correspondants et en déterminant tous les coefficients utiles. On précise que les coefficients ont été choisis afin d'optimiser la rapidité du vérin.

#### **Question 34**

En déduire la valeur du gain statique en boucle ouverte non corrigée du système. On notera ce terme K<sub>BONC</sub>. Tracer en rouge, sur le Bode de la question 33, le diagramme de la fonction de transfert en boucle ouverte du système complet non corrigé.

#### **C2 – ANALYSE DES PERFORMANCES EN CORRECTION PROPORTIONNELLE**

**Objectif:** Il s'agit ici d'analyser les performances de la commande en correction proportionnelle et de vérifier son adéquation au cahier des charges.

Considérons dans un premier temps une correction proportionnelle telle que  $C(p) = K_p$ .

#### **Question 35**

Donner l'ordre et la classe du système ainsi corrigé.

### **Question 36**

Pour  $K_p = 10$ , donner les valeurs de l'erreur statique pour une consigne de 100 mm et de l'erreur de traînage pour une consigne de vitesse de 25 mm/s. Le système peut-il répondre aux exigences de précision du cahier des charges ?

#### **Question 37**

Le système comporte-t-il un risque d'instabilité ? Si oui, préciser pour quelle valeur de  $K_p$  l'instabilité est possible (on attend une méthode graphique et un résultat sous la forme d'une puissance de 10). Conclure.

#### C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE

**Objectif:** Il s'agit ici de proposer un réglage pour une correction proportionnelle et intégrale afin de satisfaire aux performances du cahier des charges.

On prendra dans cette partie : 
$$C(p) = K_I \cdot \left(1 + \frac{1}{T_i \cdot p}\right)$$
.

#### **Question 38**

Tracer une représentation dans le plan de Bode de la fonction C(p). On demande le diagramme asymptotique ainsi que l'allure des courbes réelles.

#### **Question 39**

Donner l'ordre et la classe du système ainsi corrigé.

Afin de garantir au système une réactivité optimale, on choisit de régler la constante de temps T<sub>i</sub> permettant de compenser le mode le plus lent du système non corrigé.

#### **Question 40**

Quelle valeur de T<sub>i</sub> permet de compenser le mode le plus lent du système non corrigé?

#### **Question 41**

Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte du système ainsi corrigé pour  $K_i = 1$  (asymptotes et allures des courbes réelles).

#### **Question 42**

Quelle valeur de K<sub>i</sub> garantit les exigences de précision du cahier des charges ?

#### **Question 43**

Estimer pour cette valeur les marges de gain et de phase du système et conclure sur le choix de cette correction. On pourra prendre une valeur approchée de  $K_i$  et on rappelle, si besoin, que  $\log 2 \approx 0.3$ .

# VALIDATION DE L'ARCHITECTURE MÉCANIQUE DE LA STRUCTURE RÉALISANT LA CHAINE D'ÉNERGIE

**Objectif :** Cette partie a pour objectif de valider le choix de conception de la structure mécanique permettant de transmettre l'énergie mécanique aux volets.

La modélisation du système donnée dans les parties précédentes fait apparaître un bloc "mécanisme" qui représente la structure transmettant le mouvement des actionneurs (vérins hydrauliques) aux volets. La fonction technique associée à ce bloc est la fonction FT32 caractérisée par les critères d'appréciation donnés dans l'extrait du cahier des charges suivant :

| Fonction technique  | Critères d'appréciation                                   | Niveau                       |
|---------------------|-----------------------------------------------------------|------------------------------|
| FT32                | • mouvement de rotation des volets autour d'un axe        |                              |
| Transmettre un      | orthogonal à l'axe de la veine fluide :                   |                              |
| mouvement identique | - position de l'axe de rotation                           | orthogonal                   |
| à chaque volet.     | - débattement angulaire                                   | 40°±0,5°                     |
|                     | - précision angulaire                                     | 0,2°                         |
|                     | <ul> <li>commande simultanée des 16 volets :</li> </ul>   |                              |
|                     | - interface unique en liaison glissière / tuyère          |                              |
|                     | - nombre d'actionneurs                                    | minimum                      |
|                     | - rigidité globale                                        | $\Delta$ x $<$ 0,2 mm        |
|                     | - temps de montée en vitesse                              | inférieur à 0,1 s            |
|                     | <ul> <li>adaptation aux efforts aérodynamiques</li> </ul> |                              |
|                     | - résistance                                              | 50% de la limite élastique   |
|                     | - déformation                                             | Compatible avec la précision |

La figure 11 de l'Annexe 5 présente les éléments de la solution adoptée par le bureau d'étude.

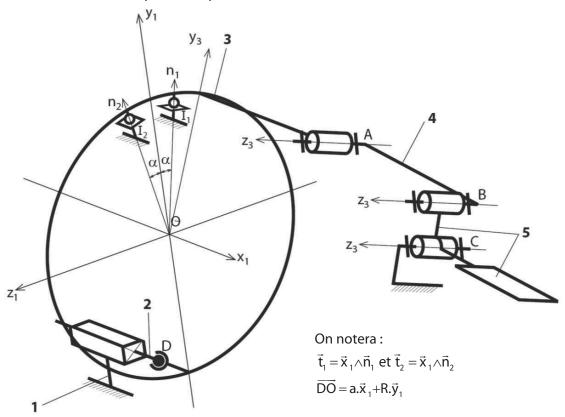
Pour synchroniser la commande des volets, on a adopté une solution consistant à les relier à une pièce unique en forme de tore entourant la tuyère et dont le déplacement assure la commande de tous les volets simultanément. Le tore repose sur deux barres de guidage fixées dans la partie supérieure du carter et parallèles à l'axe de la tuyère. Il est actionné par quatre vérins hydrauliques.

On cherche, dans cette partie, à valider le critère d'appréciation sur la rigidité globale de la structure de commande des volets à interface unique.

Les notations adoptées pour cette partie, sont les suivantes :

La base orthonormée directe liée au solide  $\mathbf{i}$ :  $\mathbf{B}_{i} = (\vec{\mathbf{x}}_{i}, \vec{\mathbf{y}}_{i}, \vec{\mathbf{z}}_{i})$ 

Le torseur cinématique du mouvement possible par une liaison  $L_k$ , d'un solide  $\boldsymbol{j}$  par rapport à un solide  $\boldsymbol{i}$  (ou par rapport au référentiel  $R_i$  lié à celui-ci), réduit en A, sera noté :  $\mathcal{V}_k \equiv \left\{ egin{align*} p_k \vec{x} + q_k \vec{y} + r_k \vec{z} \\ u_k \vec{x} + v_k \vec{y} + w_k \vec{z} \end{array} \right\}_A$  où  $(\vec{x}, \vec{y}, \vec{z})$ 


est une base orthonormée associée à la liaison L<sub>k</sub>.

Le torseur des actions mécaniques transmissibles par la liaison  $L_k$  du solide i sur le solide j, réduit en A, sera noté :  $\mathcal{F}_k \equiv \begin{cases} X_k \vec{x} + Y_k \vec{y} + Z_k \vec{z} \\ L_k \vec{x} + M_k \vec{y} + N_k \vec{z} \end{cases}_A$  où  $(\vec{x}, \vec{y}, \vec{z})$  est une base orthonormée associée à la liaison  $L_k$ .

#### D1 – ÉTUDE D'UNE COMMANDE AVEC UN SEUL ACTIONNEUR

**Objectif:** On cherche, dans un premier temps, à estimer la capacité d'une structure composée d'un seul vérin à transmettre le mouvement attendu.

On précise que le solide  $\bf 2$  représente la tige du vérin et que les liaisons en  $\bf I_1$  et  $\bf I_2$  représentent les contacts du tore  $\bf 3$  avec les deux barres sur lesquelles il repose.



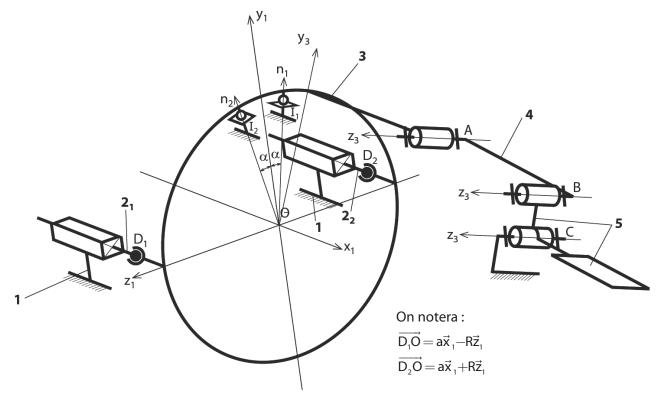
#### **Question 44**

À partir du graphe de structure (graphe des liaisons) donné dans le cahier réponse, compléter le tableau du cahier réponse en précisant pour chaque liaison, sa désignation, les éléments géométriques caractéristiques, la forme du torseur cinématique  $\mathcal{V}_k$ , c'est-à-dire l'expression des éléments de réduction en fonction des paramètres  $p_k$ ,  $q_k$ ,  $r_k$ ,  $u_k$ ,  $v_k$  et  $w_k$  dans la base locale de la liaison et la forme du torseur d'actions mécaniques transmissibles  $\mathcal{F}_k$ , c'est-à-dire l'expression des éléments de réduction en fonction des paramètres  $X_k$ ,  $Y_k$ ,  $Z_k$ ,  $L_k$ ,  $M_k$  et  $N_k$  dans la base locale de la liaison.

#### **Question 45**

Déterminer la liaison équivalente  $L_{eq34}$  aux deux liaisons  $L_3$  et  $L_4$  situées entre le solide **1** et le solide **3**. On attend une démonstration par le calcul. On précisera la forme du torseur des actions transmissibles  $\mathcal{F}_{eq34}$ .

#### **Question 46**


Déterminer la liaison équivalente  $L_{eq12}$  aux deux liaisons  $L_1$  et  $L_2$  situées entre le solide **1** et le solide **3**. On attend une démonstration par le calcul. On précisera la forme du torseur des actions transmissibles  $\mathcal{F}_{eq12}$ .

#### **Question 47**

Déterminer la liaison équivalente  $L_{eq}$  aux deux liaisons  $L_{eq34}$  et  $L_{eq12}$  situées entre le solide **1** et le solide **3**. On attend une démonstration par le calcul. On précisera la forme du torseur des actions transmissibles  $\mathcal{F}_{eq}$ . Justifier que la commande avec un seul vérin ne satisfait pas le cahier des charges.

#### **D2 – ÉTUDE D'UNE COMMANDE AVEC DEUX ACTIONNEURS**

**Objectif :** On cherche, dans un deuxième temps, à estimer la capacité d'une structure composée de deux vérins à transmettre le mouvement attendu.



#### **Question 48**

À partir du graphe de structure (graphe des liaisons) donné dans le cahier réponse et associé au schéma cinématique proposé, et en vous inspirant des résultats trouvés en D1 déterminer la liaison équivalente  $L_{eq1}$  aux liaisons  $L_{11}$ ,  $L_{21}$  et la liaison équivalente  $L_{eq2}$  aux liaisons  $L_{12}$  et  $L_{22}$  entre les solides 1 et 3.

#### **Question 49**

Déterminer par la méthode de votre choix, la liaison équivalente  $L'_{eq}$  aux deux liaisons  $L_{eq3}$ ,  $L_{eq1}$  et  $L_{eq2}$  situées entre le solide **1** et le solide **3**. On précisera la forme du torseur des actions transmissibles  $\mathcal{F}'_{eq}$  puis le torseur cinématique cinématique  $\mathcal{V}'_{eq}$ . Le cahier des charges est-il vérifié pour une commande avec deux vérins ?

#### D3 – ÉTUDE DE LA STRUCTURE ADOPTÉE PAR LE CONSTRUCTEUR

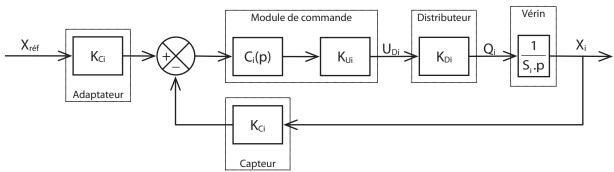
**Objectif** : On cherche finalement à estimer la capacité de réalisation d'une structure composée des quatre vérins.

#### **Question 50**

Pour des raisons d'encombrement des vérins et de capacité à fournir les actions mécaniques de poussée, le bureau d'étude a finalement choisi de commander le tore avec 4 vérins pour obtenir la liaison glissière comme liaison équivalente entre les solides 1 et 3. Quel est, dans ces conditions, le degré d'hyperstatisme du groupe de liaisons initial réalisant la liaison glissière ? Vous expliquerez brièvement, mais clairement votre raisonnement. Que pensez vous de ce résultat sur la capacité de réalisation de cette structure ?

# VALIDATION DE LA COMMANDE SYNCHRONISÉE DES VÉRINS

**Objectif :** Cette partie a pour objectif de valider le choix de conception réalisé pour assurer une commande synchrone des 4 vérins.


La fonction technique associée est la fonction FT322 caractérisée par les critères d'appréciation donnés dans l'extrait du cahier des charges suivant :

| Fonction technique             | Critères d'appréciation                       | Niveau                        |
|--------------------------------|-----------------------------------------------|-------------------------------|
| FT322                          | <ul> <li>Précision</li> </ul>                 |                               |
| Synchroniser les commandes des | - Écart de position                           | 0 mm                          |
| vérins                         | <ul> <li>Défaut de synchronisation</li> </ul> |                               |
|                                | entre deux vérins                             | 0,5 mm maxi pour une commande |
|                                | - Écart de traînage                           | en rampe de 25 mm/s           |
|                                |                                               |                               |

On considèrera en première approximation le modèle simplifié de l'axe avec l'hypothèse de fluide incompressible établi dans la partie B4.

On désigne par "axe" l'ensemble de la chaîne fonctionnelle relative à la commande d'un vérin.

Le schéma-bloc retenu pour un axe i est alors le suivant :



#### **Notations:**

#### **Grandeurs physiques:**

X<sub>réf</sub>: consigne de position du vérin fournie par le programme de commande (identique pour tous les axes)

U<sub>Di</sub>: tension de commande du distributeur hydraulique de l'axe i

Q<sub>i</sub>: débit de fluide dans le vérin de l'axe i

X<sub>i</sub>: déplacement de l'axe i

#### Fonctions de transfert et gains :

K<sub>Ci</sub>: gain du capteur de déplacement et du module d'adaptation de consigne de l'axe i

K<sub>Ui</sub>: gain du convertisseur numérique analogique de l'axe i

K<sub>Di</sub>: gain du servo-distributeur hydraulique de l'axe i

S<sub>i</sub>: section du vérin de l'axe i

C<sub>i</sub>(p): fonction de transfert du correcteur de l'axe i

On considère, pour simplifier l'étude, une correction proportionnelle de l'axe telle que  $C_i(p) = K_{pi}$ .

#### **Question 51**

Établir la fonction de transfert d'un axe  $\mathbf{i}$  sous la forme :  $H_{BFi}(p) = \frac{X_i(p)}{X_{ref}(p)} = \frac{1}{1+T_i.p}$ . On exprimera  $T_i$  en fonction de  $S_i$ ,  $K_{Ci}$ ,  $K_{Di}$ ,  $K_{Pi}$  et  $K_{Ui}$ .

Dans la suite de cette partie, nous considèrerons uniquement deux axes 1 et 2. Cela est suffisant pour mettre en évidence la problématique ainsi que pour valider les solutions techniques retenues.

Nous supposerons que les deux axes sont pilotés avec la même consigne X<sub>réf</sub>.

Même si les composants des deux axes possèdent *a priori* les mêmes références, il est impossible de garantir des comportements parfaitement identiques. Les différents gains vont donc différer d'un axe à l'autre. Il en résulte un écart entre les constantes de temps  $T_1$  et  $T_2$  des deux axes considérés.

Nous supposerons que la différence entre les deux axes est telle que :  $T_2 = 1,05.T_1$ ; ce qui correspond à 5% d'écart entre les deux constantes de temps. On prendra  $T_1 = 1$  s.

Pour simplifier les écritures, nous considèrerons que le "défaut" est entièrement concentré sur un seul composant : le servo-distributeur. Il en résulte les égalités suivantes :

$$K_{c_1} = K_{c_2} = K_c$$
;  $K_{p_1} = K_{p_2} = K_p$ ;  $K_{U1} = K_{U2} = K_U$ ;  $S_1 = S_2 = S$ 

#### **E1 – COMMANDE ASYNCHRONE**

**Objectif:** Mettre en évidence les insuffisances d'une commande asynchrone des vérins.

On adopte le schéma de la figure 13 donnée en annexe 6. Les axes sont pilotés par la même consigne mais possèdent des comportements dynamiques indépendants.

#### **Question 52**

Quel axe sera en retard sur l'autre ? Justifier votre réponse.

On note  $\triangle x(t) = x_1(t) - x_2(t)$  l'écart entre les positions des axes et  $\triangle X(p)$  son image par la transformée de Laplace. Les conditions initiales sont considérées comme nulles.

#### **Question 53**

Exprimer  $\Delta X(p)$  en fonction de  $X_{réf}(p)$ ,  $T_1$  et  $T_2$ .

#### **Question 54**

Pour une consigne en échelon  $x_{réf}(t) = X_0.u(t)$  où u(t) représente l'échelon unité, que devient l'écart en régime permanent?

#### **Question 55**

Pour une consigne en rampe  $x_{réf}(t) = V_0.t.u(t)$ , déterminer la valeur maximale de l'écart  $\triangle x(t)$  notée  $\varepsilon_{v_{max}}$  en fonction de  $V_0$ ,  $T_1$  et  $T_2$ . Faire l'application numérique pour  $V_0 = 25$  mm/s et conclure quant au respect du cahier des charges.

#### **E2 – COMMANDE MAÎTRE / ESCLAVE**

**Objectif:** Valider le choix d'une commande maître / esclave et de régler le correcteur de synchronisation.

Afin d'améliorer les performances de la commande, on adopte un montage de type maître / esclave dont le schéma est donné sur la figure 14 de l'annexe 6. Les axes sont toujours pilotés par la même consigne mais cette fois on effectue un contrôle de l'écart en temps réel pour réajuster la commande de l'axe 2.

La commande de l'axe 1 n'est pas modifiée, c'est lui qui impose le "rythme", on le nommera "axe maître". L'axe 2 est contraint d'adapter son rythme à celui de l'axe 1, on le nommera "axe esclave".

Un correcteur de synchronisation est disposé en aval du comparateur d'axes. On considèrera une correction proportionnelle telle que :  $C_s(p) = K_s$ .

#### **Question 56**

$$\begin{split} &\text{Exprimer} \quad \Delta X\left(p\right) \text{ en fonction de } X_{\text{réf}}\left(p\right). \quad &\text{Montrer que l'on peut mettre la relation sous la forme}: \\ &\Delta X\left(p\right) = \frac{K'.p}{(1+T_1.p)(1+T_2'.p)}.X_{\text{réf}}\left(p\right) \text{ avec } K' = \frac{\left(T_2-T_1\right).K_p.K_c}{K_s+K_p.K_c}. \text{ Exprimer } T_2' \text{ en fonction de S, Kc, K}_{D2}, K_p, K_U \text{ et Ks.} \end{split}$$

#### **Question 57**

Déterminer la nouvelle expression de  $\mathcal{E}_{V_{max}}$  en fonction de  $V_0$ , K',  $T_1$  et  $T_2$ .

#### **Question 58**

La solution adoptée permet-elle de respecter le cahier des charges ? Proposer un réglage pour le gain de synchronisation  $K_S$  pour  $K_P = 2$  et  $K_C = 2.10^5$  m<sup>-1</sup>.

#### FIN DE L'ÉNONCÉ

# Description fonctionnelle et structurelle

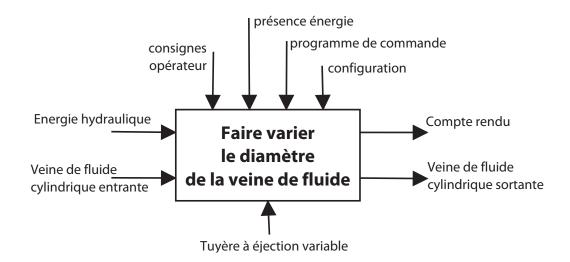



figure 1 - SADT de niveau A-0

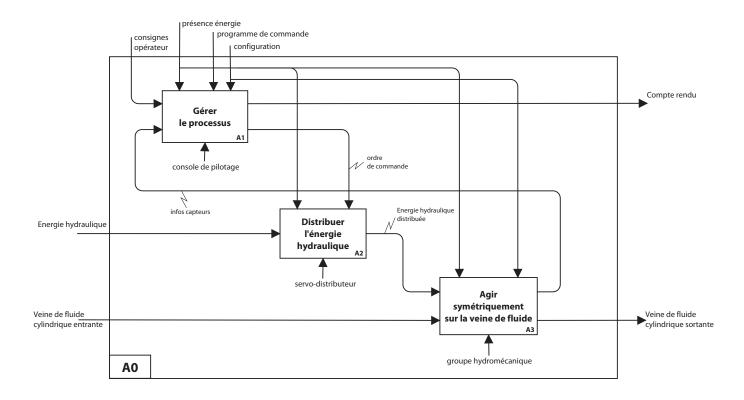
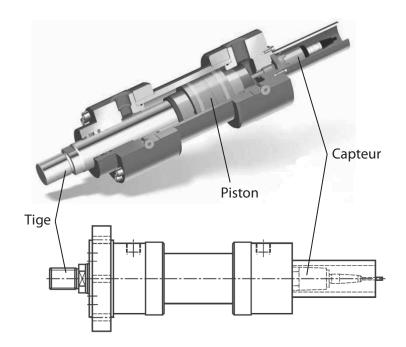




figure 2 - SADT de niveau A0

# Composants de la chaîne fonctionnelle de commande d'un vérin

## Vérin hydraulique à capteur de déplacement intégré



### Caractéristiques

Section utile en sortie :  $S = 20 \text{ cm}^2$ Charge maxi :  $F_{V_{max}} = 50 \text{ kN}$ Débit maxi :  $Q_{V_{max}} = 12 \text{ L/min}$ 

Résolution capteur : 5 μm

Codage position: Code Gray 24 bits

#### Servo-distributeur hydraulique



### Caractéristiques

Signal de commande :  $U_D = 0.. \pm 10 \text{ V}$ 

Débit maxi :  $Q_{max} = 6 L/min$ 

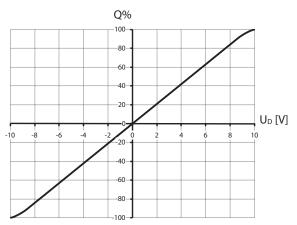



figure 3 - Débit en fonction du signal

# Mécanisme de transmission de mouvement pour un volet

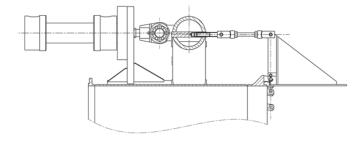



figure 4 – position pleine ouverture

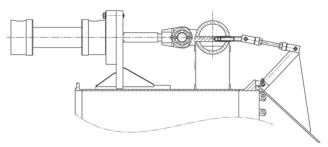
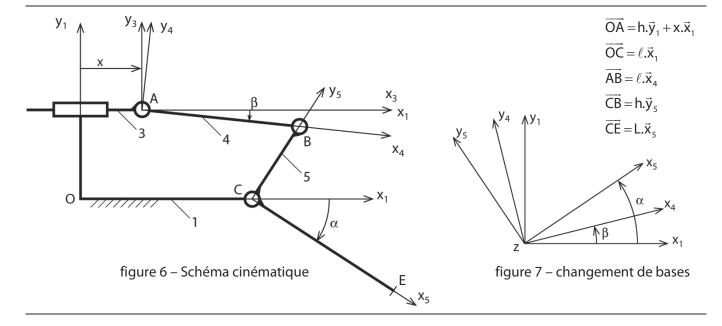
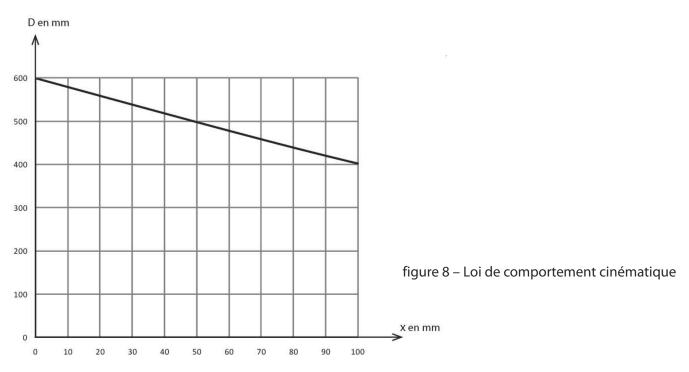





figure 5 – position ouverture réduite





Tuyère à ouverture variable Banque PT – SIA 2011

# Modélisation géométrique d'un volet

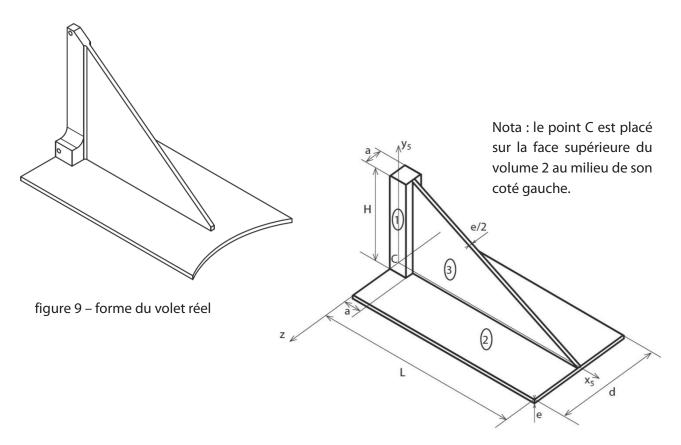
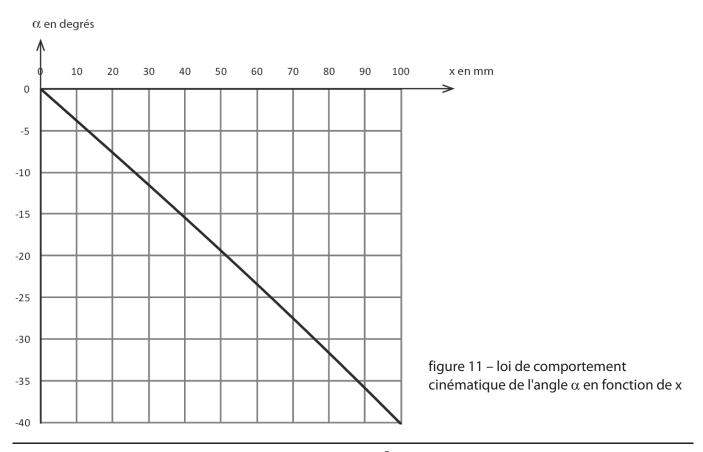




figure 10 - modèle géométrique simplifié



Tuyère à ouverture variable Banque PT – SIA 2011

# Architecture mécanique de la structure réalisant la chaîne d'énergie

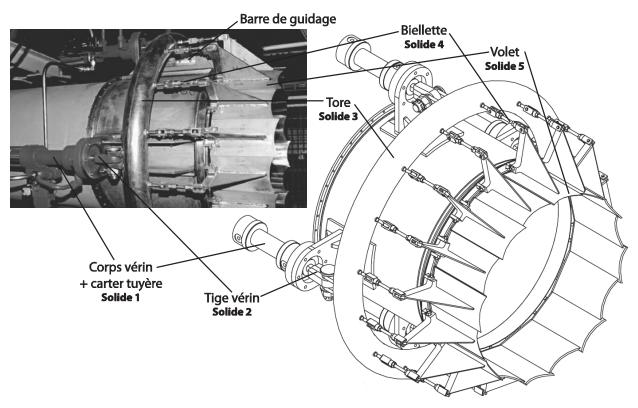



figure 11 – Vue de la solution adoptée pour réaliser la structure

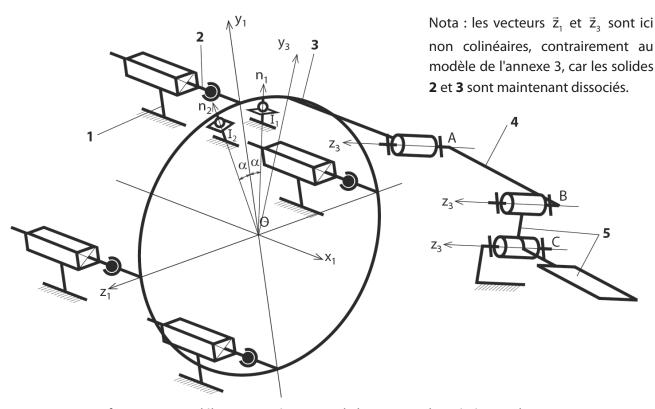



figure 12 – Modélisation cinématique de la structure limitée à un volet

# Commande synchronisée des vérins

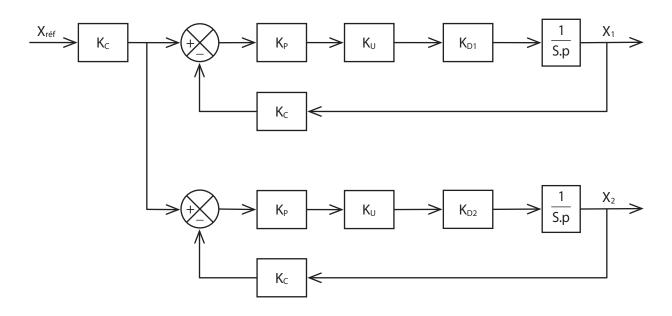
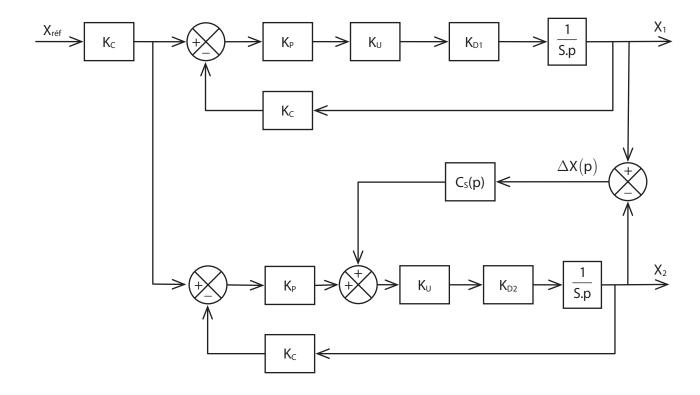
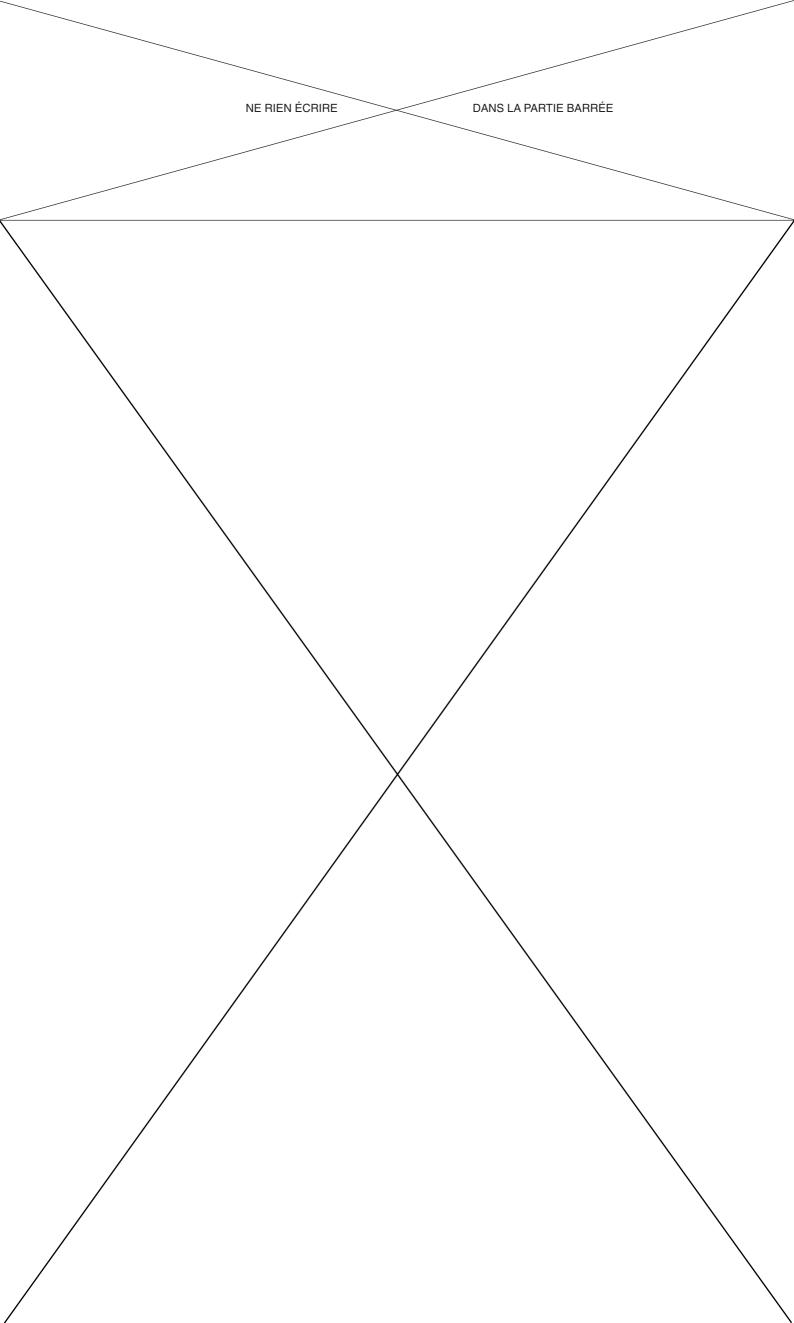
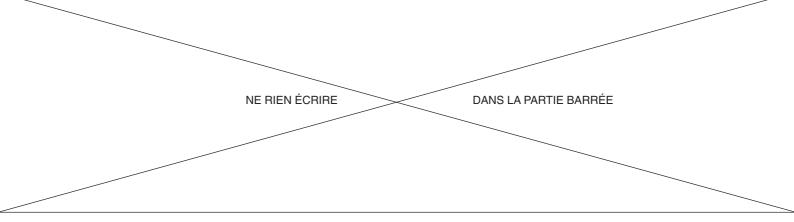



figure 13 – Commande asynchrone



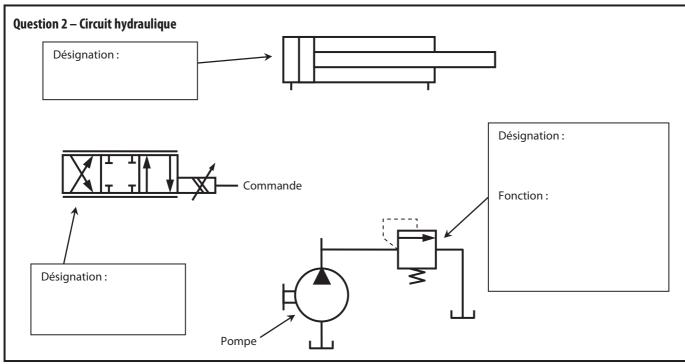


figure 14 – Commandes synchronisées de type maître/esclave

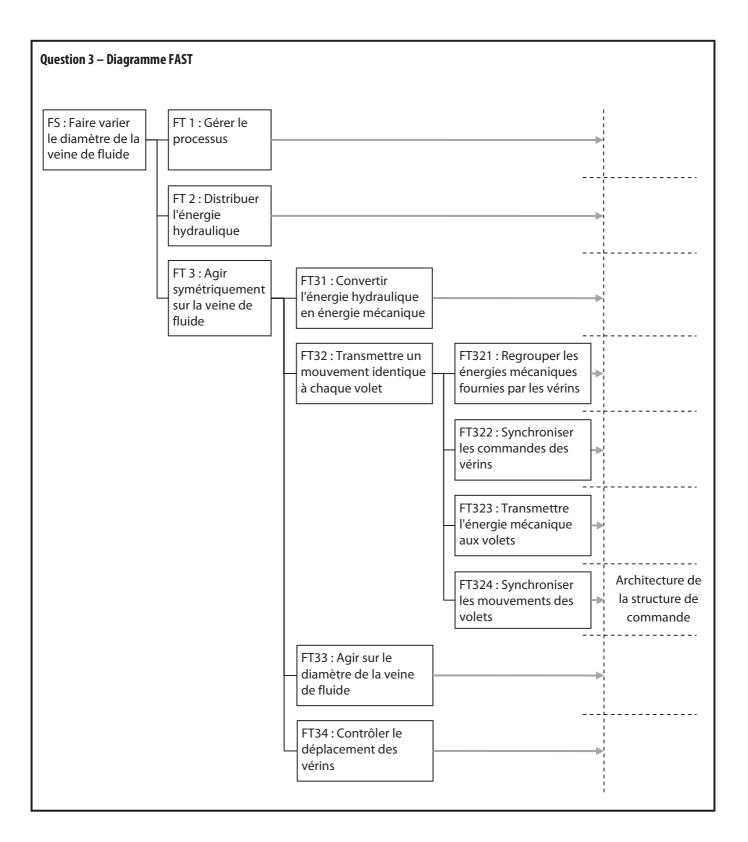

11PT25

# L'usage de calculatrices est interdit

# Cahier Réponses Épreuve de Sciences Industrielles A Banque PT – 2011

TOURNEZ LA PAGE S.V.P




## PARTIE A -

## **ANALYSE FONCTIONNELLE ET STRUCTURELLE**







|                                                                   | NE RIEN ÉCRIRE        | DANS LA PARTIE BARRÉE                     |
|-------------------------------------------------------------------|-----------------------|-------------------------------------------|
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   | PAR                   | ΓΙΕ B ——————————————————————————————————— |
| MODÉLISATION DE LA CHAINE FONCTIONNELLE<br>DE COMMANDE D'UN VÉRIN |                       |                                           |
| – MODÉLISATION DU                                                 | J COMPORTEMENT DU SER | VO-DISTRIBUTEUR HYDRAULIQUE               |
| estion 4 – Fermeture géomé                                        | trique                |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
| estion 5 – Loi de comportem                                       | ent cinématique       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       |                                           |
|                                                                   |                       | $\alpha =$                                |

|                                  |                                     | ,                    |
|----------------------------------|-------------------------------------|----------------------|
|                                  | NE RIEN ÉCRIRE DANS                 | S LA PARTIE BARRÉE   |
|                                  |                                     |                      |
| _                                |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     | D=                   |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
| Question 6 – Linéarisation de la | oi de comportement                  |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     | D=                   |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
| Ouestion 7 – Cahier des charges  | de la chaîne de commande des vérins |                      |
| question / camer des charges     | re la chame de communae des verms   |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  |                                     |                      |
|                                  | 1                                   |                      |
|                                  |                                     | Course =             |
|                                  |                                     |                      |
|                                  |                                     | Temps de réponse =   |
|                                  |                                     |                      |
|                                  |                                     | Errour stations      |
|                                  |                                     | Erreur statique =    |
|                                  |                                     |                      |
|                                  |                                     | Erreur de traînage = |
| 1                                |                                     | 1                    |
|                                  |                                     |                      |
|                                  |                                     |                      |

## **B2 – MODÉLISATION DU COMPORTEMENT DU SERVO-DISTRIBUTEUR HYDRAULIQUE**

Question 8 – Gain du servo-distributeur

$$K_{\scriptscriptstyle D} =$$

Question 9 – Validation du choix des composants

$$V_{\text{max}} =$$

Validation du choix:

## **B3 – MODÉLISATION DU COMPORTEMENT DU CAPTEUR DE DÉPLACEMENT**

Question 10 – Gain du capteur

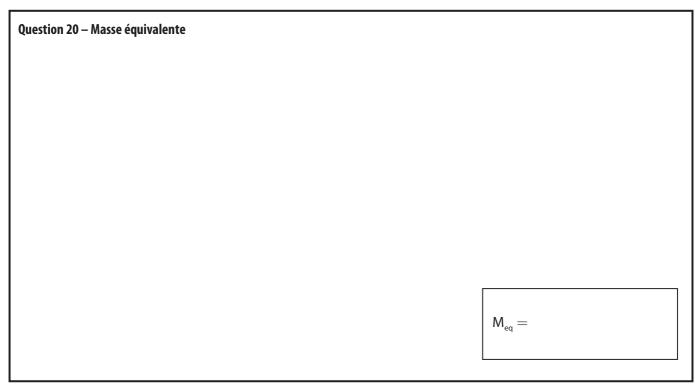
$$K_c =$$

 $\label{eq:Question 11-Validation du choix des composants} Question 11-Validation du choix des composants$ 

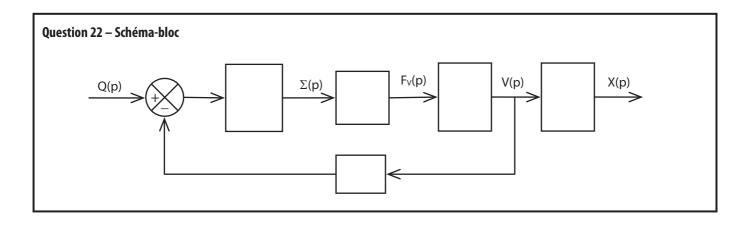
$$\hat{\mathbf{x}}_{\text{max}} =$$

nb bits =

**Validation du choix:** 


|                                 | NE RIEN ÉCRIRE        |                | DANS LA PARTIE BAI | RRÉE                |
|---------------------------------|-----------------------|----------------|--------------------|---------------------|
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
| Question 12 – Code Gray         |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
| B4 – MODÉLISATION DU            | COMPORTEMENT D        | U VÉRIN – HYPO | OTHÈSE FLUIDE INC  | COMPRESSIBLE        |
|                                 |                       |                |                    |                     |
| Question 13 – Fonction de trans | fert du vérin         |                |                    |                     |
| Question is Tolleton actuals.   | icit da veriii        |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    | $H_{v}(p)=$         |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
| Question 14 – Fonction de trans | fert en boucle fermée |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    | K =                 |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    | T=                  |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
| 0                               |                       |                |                    |                     |
| Question 15 — Écart de position |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                | I                  |                     |
|                                 |                       |                |                    | C                   |
|                                 |                       |                |                    | $\mathcal{E}_{s} =$ |
|                                 |                       |                |                    |                     |
| Validation de la perfori        | mance:                |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |
|                                 |                       |                |                    |                     |

|                              | NE RIEN ÉCRIRE | DANS LA PARTIE BA | RRÉE      |
|------------------------------|----------------|-------------------|-----------|
|                              |                |                   | _         |
|                              |                |                   |           |
|                              |                |                   |           |
| Question 16 – Réglage du cor | recteur        |                   |           |
| Question 16 – Réglage du cor | recteur        |                   |           |
| Question 16 – Réglage du cor | recteur        |                   | $K_{p} =$ |
| Question 16 – Réglage du cor | recteur        |                   | $K_{p} =$ |


| Question 17 – Moment d'inertie |                |
|--------------------------------|----------------|
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                |                |
|                                | $I_{(V,Cz)} =$ |
|                                |                |
|                                |                |

| NE RIEN ÉCRIRE | DANS LA PARTIE BARRÉE |   |
|----------------|-----------------------|---|
|                |                       |   |
|                |                       | _ |
|                |                       |   |
|                |                       |   |

| Question 18 — Énergie cinétique |         |
|---------------------------------|---------|
|                                 |         |
|                                 |         |
|                                 |         |
|                                 | $E_c =$ |



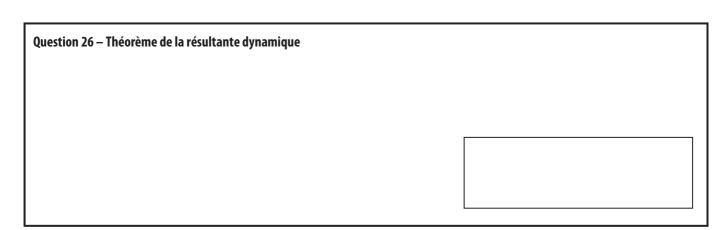
Question 21 – Application numérique 
$$\mathsf{M}_{\mathrm{eq}} =$$

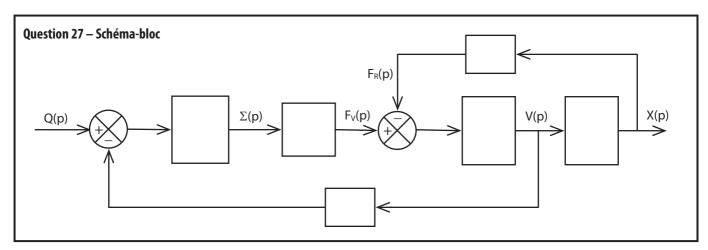


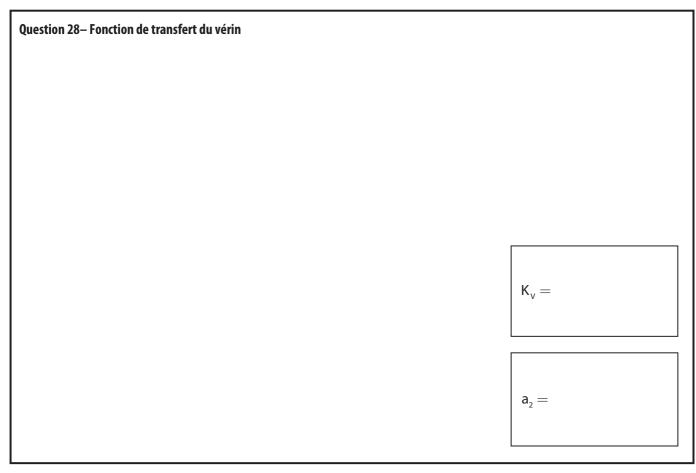
### B5.2 – Prise en compte de l'action de l'air sur les volets

Question 23 – Puissance galiléenne des actions mécaniques

P =


$$\mathsf{F}_{\mathsf{eq}} =$$


Question 24 – Action résistante équivalente


$$F_R =$$

$$\mathsf{K}_{\scriptscriptstyle{\mathsf{F}}} =$$

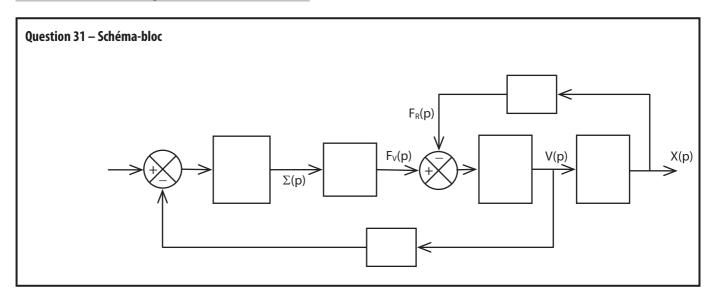
Question 25 – Application numérique  $\mathsf{K}_{_{\mathrm{F}}} =$ 

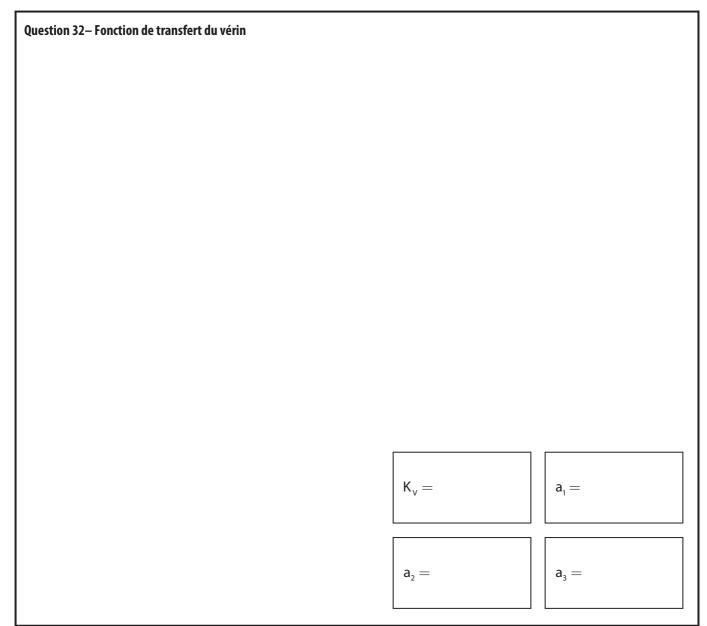


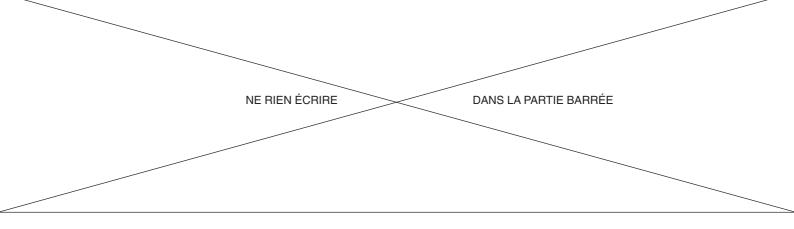




### B5.3 – Validation du modèle de comportement du vérin


Question 29 – Fonction de transfert en boucle fermée

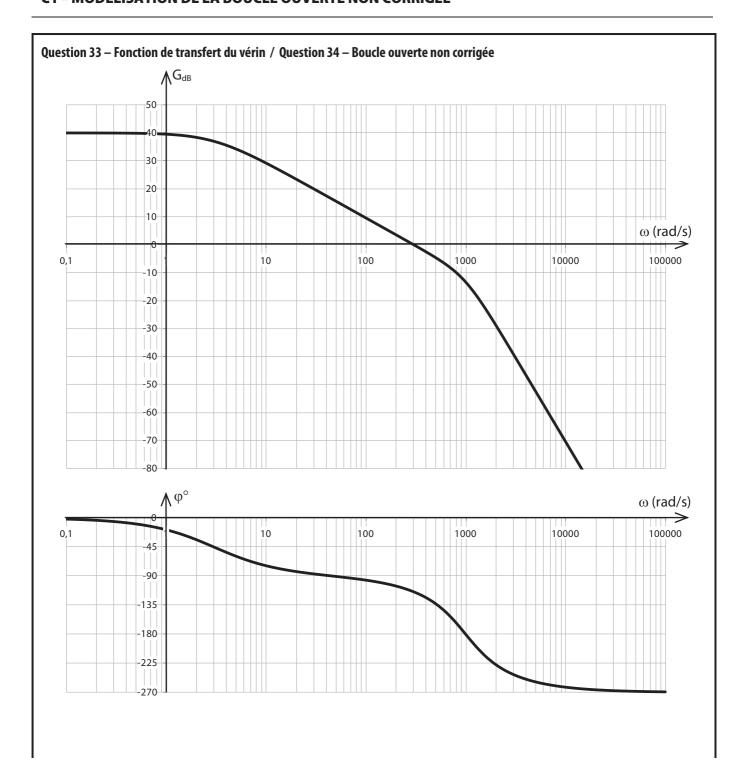

 $H_{_{BF}}(p) =$ 


Question 30 – Critère de Routh

**Conclusion:** 

## B5.4 – Prise en compte d'un débit de fuite








## PARTIE C -

# SYNTHÈSE DU CORRECTEUR DE LA COMMANDE EN POSITION D'UN VÉRIN

#### C1 - MODÉLISATION DE LA BOUCLE OUVERTE NON CORRIGÉE



|                                                       | NE RIEN ÉCRIRE               |                | DANS LA PARTIE E | ARRÉE                          |
|-------------------------------------------------------|------------------------------|----------------|------------------|--------------------------------|
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              | $H_{v}(p)=$    |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       |                              |                |                  |                                |
|                                                       | en boucle ouverte non corrig | ée             | Γ                |                                |
| Question 34 — Gain statique e                         |                              |                |                  | $K_{\scriptscriptstyleBONC} =$ |
| Question 34 – Gain statique 6                         |                              |                |                  |                                |
| Question 34 — Gain statique e                         |                              |                |                  | BONC                           |
| Question 34 — Gain statique 6                         |                              |                |                  | BONC                           |
| Question 34 — Gain statique e                         |                              |                |                  | BONC                           |
|                                                       |                              |                |                  | BONC                           |
| Question 34 – Gain statique e                         | RFORMANCES EN COR            | RRECTION PROPO |                  | BONC                           |
|                                                       | RFORMANCES EN COR            | RECTION PROPO  |                  | BONC                           |
|                                                       |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI                                  |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI                                  |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI                                  |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI                                  |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI                                  |                              | RECTION PROPO  |                  | BONC                           |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RRECTION PROPO |                  |                                |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RECTION PROPO  |                  | $\epsilon_{ m s}=$             |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RECTION PROPO  |                  |                                |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RECTION PROPO  |                  |                                |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RECTION PROPO  |                  | $\epsilon_{s}=$                |
| C2 – ANALYSE DES PEI<br>Question 35 – Ordre et classe |                              | RECTION PROPO  |                  |                                |

| Question 37 – Stabilité  C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul  Question 39 – Ordre et classe |                                 |                    |                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------------|--|
| Question 37 – Stabilité  C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                |                                 |                    |                       |  |
| Question 37 – Stabilité  C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                |                                 |                    |                       |  |
| Question 37 – Stabilité  C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                                          |                                 | NE RIEN ÉCRIRE     | DANS LA PARTIE BARRÉE |  |
| :3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Juestion 38 – Bode du correcteur seul                                                         |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| :3 - RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  uestion 38 - Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Luestion 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Luestion 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 23 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE Question 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 23 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE Question 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| 3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE  Question 38 – Bode du correcteur seul                                                          |                                 |                    |                       |  |
| C3 – RÉGLAGE D'UNE CORRECTION PROPORTIONNELLE ET INTÉGRALE Question 38 – Bode du correcteur seul                                                          | Nucetion 27 Ctabilité           |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     | (uestion 37 – Stabilite         |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Juestion 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| uestion 38 – Bode du correcteur seul                                                                                                                      |                                 |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
| Question 38 – Bode du correcteur seul                                                                                                                     |                                 |                    |                       |  |
|                                                                                                                                                           | CS - REGLAGE D'ONE COI          | RECTION PROPORTION | VELLE ET INTEGRALE    |  |
| Question 39 – Ordre et classe                                                                                                                             | Question 38 – Bode du correcteu | r seul             |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 – Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| luestion 39 – Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| luestion 39 – Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 — Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 — Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| uestion 39 — Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
| uestion 39 – Ordre et classe                                                                                                                              |                                 |                    |                       |  |
| Question 39 — Ordre et classe                                                                                                                             |                                 |                    |                       |  |
|                                                                                                                                                           | Junction 20 Ordro at classe     |                    |                       |  |
|                                                                                                                                                           | luestivii 33 – viule et classe  |                    |                       |  |
|                                                                                                                                                           | question 39 – Orure et classe   |                    |                       |  |
|                                                                                                                                                           | question 39 – Orure et classe   |                    |                       |  |
|                                                                                                                                                           | question 39 – Orule et classe   |                    |                       |  |
|                                                                                                                                                           | question 39 — Orule et classe   |                    |                       |  |
|                                                                                                                                                           | guestion 39 – Office et classe  |                    |                       |  |

Tuyère à ouverture variable – Cahier réponse Page 15 Banque PT – SIA 2011

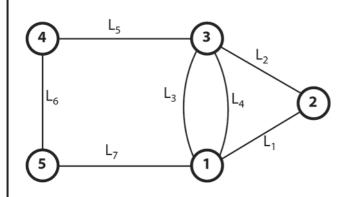
|                               | NE RIEN ÉCRIRE | DANS LA PARTIE BARRÉE |  |
|-------------------------------|----------------|-----------------------|--|
|                               |                |                       |  |
|                               |                |                       |  |
| Question 40 — Réglage constan | te de temps    |                       |  |

 $T_{i} =$ 

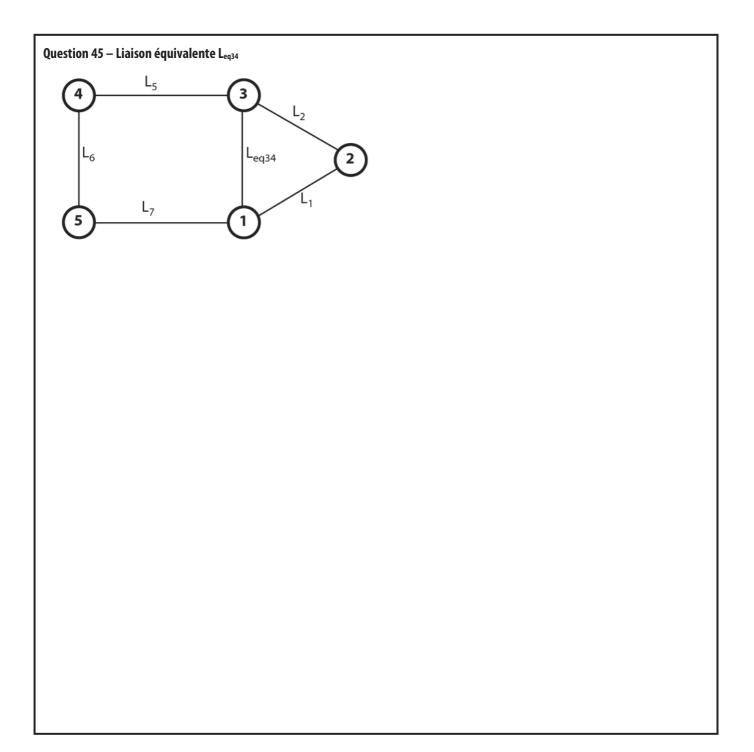
| stio | n 41 - | - Sys | tèn | ne ( | corrigé | pou | r <b>K</b> i | = 1 |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|------|--------|-------|-----|------|---------|-----|--------------|-----|--|--|--|---|--|---|--|--|--|---|--|-------------|-------------|----------|
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             | П        |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             | H        |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  | Ħ |  |             |             | T        |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  | - |  |  |  | + |  |             |             | $\vdash$ |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  | - |  | $\parallel$ | $\parallel$ |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  | Ħ |  |   |  |  |  | T |  |             |             |          |
|      |        |       |     |      |         |     |              |     |  |  |  |   |  |   |  |  |  |   |  |             | - 1 /       |          |

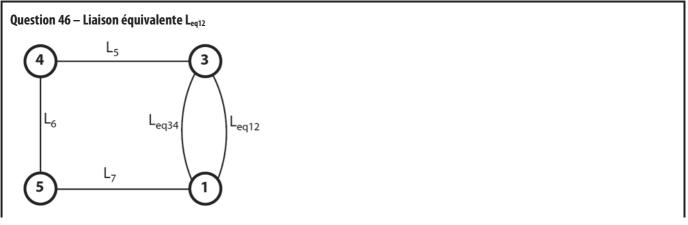
| NE RIEN ÉCRIRE DANS LA PARTIE BARRÉE |  |
|--------------------------------------|--|
|                                      |  |
|                                      |  |
|                                      |  |
|                                      |  |

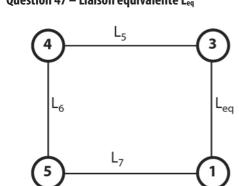
| Question 42 – Réglage de la précision |         |
|---------------------------------------|---------|
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       |         |
|                                       | $K_i =$ |
|                                       |         |


| uestion 43 — Marges de stabilité et conclusion |              |  |
|------------------------------------------------|--------------|--|
|                                                | MG =         |  |
|                                                |              |  |
|                                                | $M\Phi\!=\!$ |  |
|                                                |              |  |
|                                                |              |  |
|                                                |              |  |

## - PARTIE D -

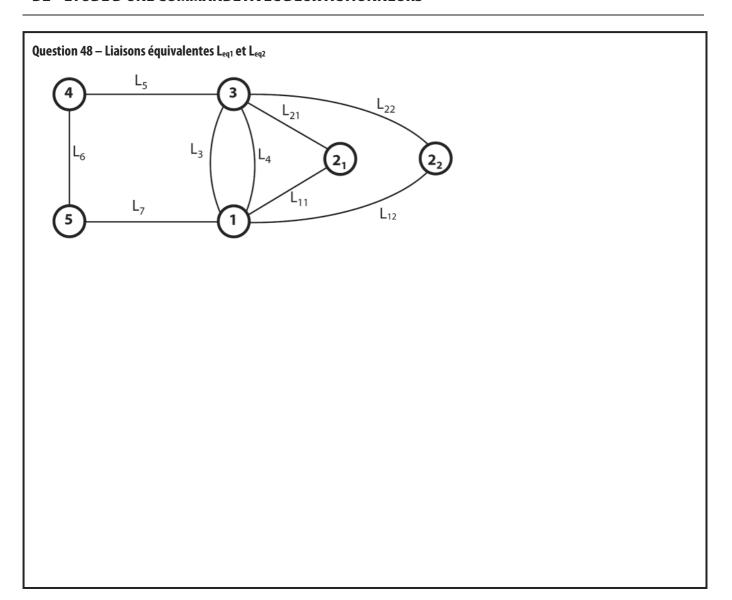

# VALIDATION DE L'ARCHITECTURE MÉCANIQUE DE LA STRUCTURE RÉALISANT LA CHAINE D'ÉNERGIE


#### D1 – ÉTUDE D'UNE COMMANDE AVEC UN SEUL ACTIONNEUR



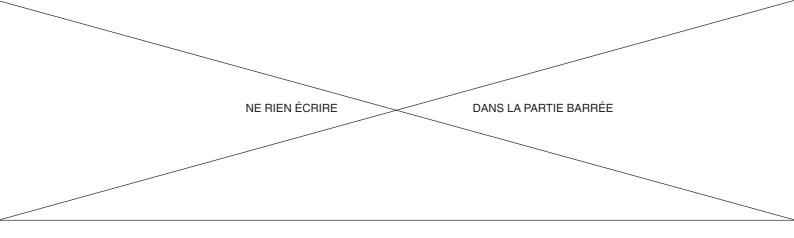



| Liaison        | Désignation | Éléments<br>géométriques | Torseur cinématique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Torseur des actions<br>mécaniques transmissibles                             |
|----------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| L <sub>1</sub> |             |                          | $\mathcal{V}_1\!\equiv\!\Big\{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathcal{F}_1 \equiv \left\{$                                               |
| L <sub>2</sub> |             |                          | $\mathcal{V}_{\scriptscriptstyle 2}\!\equiv\!\!\left\{ \hspace{1cm} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathcal{F}_{\scriptscriptstyle 2}\!\equiv\! igg\{$                         |
| L <sub>3</sub> |             |                          | $\mathcal{V}_3^\prime\!\equiv\!\left\{ egin{array}{c} \mathcal{V}_3^\prime\!\equiv\!\left\{ egin{array}{c} \mathcal{V}$ | $\mathcal{F}_{\scriptscriptstyle 3} \equiv igg\{$                            |
| L <sub>4</sub> |             |                          | $\mathcal{V}_{4}\!\equiv\!\left\{  ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathcal{F}_{4}\equiv igg\{$                                                |
| L <sub>5</sub> |             |                          | $\mathcal{V}_{\scriptscriptstyle{5}}\!\equiv\!\!\left\{  ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathcal{F}_{\scriptscriptstyle{5}}\!\equiv\!\!\left\{ \hspace{1cm} ight\}$ |
| L <sub>6</sub> |             |                          | $\mathcal{V}_{_{6}}\!\equiv\!\!\left\{  ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathcal{F}_{6}\equiv igg\{$                                                |
| L <sub>7</sub> |             |                          | $V_7 \equiv \left\{ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathcal{F}_{7} \equiv igg\{$                                               |
|                |             |                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |









<u>Justification</u>:

#### D2 – ÉTUDE D'UNE COMMANDE AVEC DEUX ACTIONNEURS



Question 49 — Liaisons équivalentes  $L'_{eq}$ 

|                                                             | NE RIEN ÉCRIRE            | DANS LA PARTIE BARRÉE |  |
|-------------------------------------------------------------|---------------------------|-----------------------|--|
|                                                             | NE HIEN ECHINE            | DANS LA PARTIE DANNEL |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
|                                                             |                           |                       |  |
| D2_ÉTUDE DE LA STRU                                         | CTUDE ADODTÉE DAD LE CONS | FDIICTELID            |  |
| D3 – ÉTUDE DE LA STRUC                                      | CTURE ADOPTÉE PAR LE CONS | FRUCTEUR              |  |
| D3 – ÉTUDE DE LA STRUC                                      | CTURE ADOPTÉE PAR LE CONS | FRUCTEUR              |  |
|                                                             |                           | FRUCTEUR              |  |
| D3 – ÉTUDE DE LA STRUC<br>Question 50 – Structure à 4 vérir |                           | FRUCTEUR              |  |
|                                                             |                           | FRUCTEUR              |  |



## PARTIE E -

## VALIDATION DE LA COMMANDE SYNCHRONISÉE DES VÉRINS

| Question 51 – Fonction de transfert |         |
|-------------------------------------|---------|
|                                     |         |
|                                     |         |
|                                     | $T_i =$ |
|                                     |         |

Question 52 – Axe en retard

Question 53 – Expression de  $\Delta X(p)$   $\Delta X(p) =$ 

| Question 54 – Écart en réponse à un échelon |                                                                      |
|---------------------------------------------|----------------------------------------------------------------------|
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
| Question 55 – Écart en réponse à une rampe  |                                                                      |
| Question 33 – Leart en reponse à une fampe  |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             | $\mathcal{E}_{Vmax} =$                                               |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             | Application numérique                                                |
|                                             |                                                                      |
|                                             | $\frac{\text{Application num\'erique}}{\epsilon_{_{\text{Vmax}}}} =$ |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
|                                             |                                                                      |
| Ouestion 56– Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56— Expression de $\Delta X(p)$    |                                                                      |
| Question 56— Expression de $\Delta X(p)$    |                                                                      |
| Question 56— Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56— Expression de $\Delta X$ (p)   |                                                                      |
| Question 56— Expression de $\Delta X$ (p)   |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |
| Question 56– Expression de ΔX (p)           |                                                                      |
| Question 56– Expression de $\Delta X(p)$    |                                                                      |

NE RIEN ÉCRIRE

DANS LA PARTIE BARRÉE

|                           | NE RIEN ÉCRIRE    | DANS LA PARTIE BARRÉE             |
|---------------------------|-------------------|-----------------------------------|
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   | $T_2' =$                          |
|                           |                   |                                   |
| Question 57 – Écart en ré |                   |                                   |
| question 37 – Etart en re | ponse a une rampe |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   | $oldsymbol{\mathcal{E}}_{Vmax} =$ |
|                           |                   |                                   |
|                           |                   |                                   |
| Question 58 – Réglage du  | correcteur        |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   |                                   |
|                           |                   | $K_s \ge$                         |