

MP

2013

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrices autorisées

Étude du robot de traite automatique LELY Astronaut A3

I Présentation générale

I.A – Contexte de l'étude

Pour répondre à une demande soutenue des consommateurs, les agriculteurs de la filière laitière doivent assurer un volume de production de lait constant tout au long de l'année, tout en garantissant une hygiène parfaite et un respect des réglementations sur l'environnement et le bon traitement des animaux.

Afin d'atteindre cet objectif tout en améliorant leurs propres conditions de vie (réduction des travaux pénibles et répétitifs, développement de nouvelles activités économiques, etc.), une grande partie des producteurs laitiers s'est équipée de robots de traite automatique tels que le modèle Astronaut A3 de l'entreprise néerlandaise LELY, présenté figure 1.

Deux exemplaires de ce modèle sont implantés dans le GAEC laitier Caverre, situé à Yvignac-La-Tour (Côtes d'Armor), dont le cheptel comprend 120 vaches Prim' Holstein, race bovine utilisée pour sa production de lait importante, régulière et de qualité.

Figure 1 Le robot de traite LELY Astronaut A3 (d'après plaquette LELY) ; le box présenté figure 2 se trouve à l'arrière

I.B – Principe, avantages et inconvénients de la traite automatique

L'implantation d'un système de traite automatique permet de laisser à la vache la liberté de choisir le moment de la traite. Lorsqu'une vache se présente dans le box du robot (voir figure 2), elle est identifiée puis le processus de traite débute et est géré de manière totalement automatique (traite, alimentation de l'animal et contrôle en continu de la qualité du lait).

Le choix d'une traite par un robot présente des avantages très importants pour les producteurs :

- augmentation de 15 à 20% de la production laitière par vache, du fait de la multiplication des traites;
- amélioration de l'état général des vaches par réduction des infections au niveau des trayons (ou pis lactifères) connectés au système de traite ;
- animaux plus calmes car la traite est gérée individuellement (moins d'interactions entre les vaches);
- réduction globale du coût d'une traite (main d'œuvre, entretien, tests du lait, etc.).

Figure 2 Vache en phase de traite et d'alimentation dans le box du robot de traite LELY Astronaut A3 (d'après plaquette LELY)

- Il présente aussi quelques inconvénients d'influences moindres :
- nécessité d'avoir un cheptel adapté (vaches acceptant la traite automatique et avec des caractéristiques morphologiques — taille, position des trayons, etc. — compatibles avec la connexion des gobelets);
- problèmes inhérents à l'aspect technique du produit (utilisation, maintenance, entretien, pannes, etc.) ;
- nécessité de maintenir une activité physique des animaux pour éviter les boiteries (défaut entraînant une difficulté de marche).

Ce ratio entre les avantages et les inconvénients explique le rapide développement actuel.

I.C – Le robot de traite Lely Astronaut A3

I.C.1) Analyse fonctionnelle partielle externe

L'environnement du robot de traite automatique Astronaut A3 est décrit par le diagramme des inter-acteurs suivant, proposé sous forme partielle figure 3 avec les énoncés des fonctions de service figure 4.

Figure 3 Diagramme partiel du robot LELY Astronaut A3

FSi	Énoncé de la fonction de service	FSi	Énoncé de la fonction de service
FS1	Traire automatiquement une vache à sa demande	FS5	S'adapter à la salle de traite
FS2	Distribuer automatiquement de la nourriture à la vache lors de la traite	FS6	Être alimenté en énergies électrique et pneumatique
FS3	Respecter les normes en cours et s'adapter aux évolutions de norme	FS7	Assurer une communication continue avec le personnel agricole
FS4	Résister aux agressions de l'environnement extérieur (eau, boue, urine, etc.)	FS8	Analyser la qualité du lait en continu

Figure 4 Énoncé des fonctions de service associées

I.C.2) Structure générale

La partie du robot de traite Astronaut A3 dévolue à l'interaction avec la vache comprend principalement :

- $-\,$ un box où est installée la vache pendant la phase de traite (voir figure 2) ;
- et une structure de positionnement de la tête de traite (voir figure 5) particulièrement étudiée dans la suite.

Figure 5 Structure mécanique du système de positionnement de la tête de traite et zoom sur la tête de traite avec les gobelets connectés aux trayons (d'après plaquette LELY)

La structure mécanique permettant le positionnement précis de la tête de traite par rapport à l'animal est un système à trois degrés de liberté comprenant (voir figure 5) un chariot (1), un bras supérieur (2) et un ensemble (34) en mouvements relatifs : l'ensemble (34) est composé du bras intermédiaire (3) et du bras inférieur (4) liés de manière complète.

Conformément à l'intitulé traditionnel en robotique, on appelle « axe » un mouvement piloté et asservi. La partie mécanique du système Astronaut A3 étudié comporte trois axes.

- **axe 1** : le chariot (1) se déplace longitudinalement (direction \vec{x}_0) par rapport au bâti (0) ; un vérin pneumatique [V1] commande son déplacement et son maintien en position ;
- **axe 2**: le bras supérieur (2) pivote autour d'un axe horizontal (rotation dans le plan de normale \vec{x}_0) par rapport au chariot (1); deux vérins pneumatiques [V21] et [V22] montés en parallèle et commandés simultanément par un unique distributeur commandent son pivotement et son maintien en position;
- **axe 3**: le bras intermédiaire (3), élément de l'ensemble (34), pivote autour d'un axe horizontal (rotation dans le plan de normale \vec{x}_0) par rapport au bras supérieur (2); un vérin [V3] commande son pivotement et son maintien en position.

Le bras inférieur (4), élément de l'ensemble (34), porte le système de branchement aux trayons, le système pulsateur, le système de nettoyage (brosses rotatives) ainsi que la tête de traite, constituée des gobelets et du système de détection des trayons par triangulation laser 3D (voir zoom sur la figure 5).

L'interface entre l'utilisateur et le robot se présente sous la forme d'un écran tactile (système « X-link ») qui affiche toutes les commandes et informations nécessaires au fonctionnement et à l'entretien du robot.

Le diagramme FAST figure A du document réponse propose une expansion de la fonction de service FS1, limitée à trois niveaux de description fonctionnelle.

I.D – Enjeux liés à l'implantation d'un robot de traite Lely Astronaut A3 dans une exploitation

Outre la qualité du lait produit, la pertinence économique de l'installation d'un système de traite automatique par robot est directement liée au nombre de vaches pouvant être traites en une journée par celui-ci et donc au volume de lait produit par l'ensemble du cheptel. Les revenus des producteurs laitiers, et donc la pertinence de leur investissement, dépendent de tous ces éléments : ce point est étudié dans la partie II.

Par ailleurs, le système doit pouvoir connecter rapidement les gobelets aux trayons de la vache et être capable de réaliser une traite continue et complète indépendamment des interactions entre la vache et le robot de traite : ces deux points sont respectivement étudiés dans les parties III et IV.

II Validation de l'implantation dans une exploitation laitière

— Objectif

Valider la pertinence de l'implantation d'un robot de traite Astronaut A3 dans le cas particulier du GAEC Caverre (cheptel de 120 vaches).

II.A – Adéquation du robot à la taille du cheptel

Le robot de traite Astronaut A3 est prévu pour fonctionner 20 heures sur 24 : sur cette durée, la moyenne sur le troupeau est de 2,5 traites par vache, la durée moyenne d'une traite étant de 6 minutes.

Par ailleurs, afin d'assurer une hygiène parfaite, des nettoyages réguliers sont prévus et, lors de ces opérations, le box n'est pas accessible. Deux types de nettoyage sont réalisés :

- des nettoyages simples à l'eau chaude des parties en contact avec le lait (gobelets, etc.) qui durent 4 minutes et sont exécutés toutes les 5 traites;
- et des nettoyages complets de l'ensemble du robot qui durent 10 minutes et sont exécutés toutes les 20 traites ainsi qu'à l'issue des 20 heures de fonctionnement, quel que soit le nombre de traites effectuées.

Un cycle de traites correspond au temps séparant deux nettoyages complets.

Q 1. Déterminer le nombre de cycles de traites quotidiennes effectués par le robot dans les conditions définies. Analyser alors le résidu horaire disponible et le nombre de traites complémentaires possibles. En déduire le nombre total de traites que peut effectuer le robot sur une plage d'utilisation de 20 heures. Définir alors la taille maximale du troupeau pour un seul robot Astronaut A3.

Pour information, afin de ne pas surcharger le robot Astronaut A3 sur les 20 heures de fonctionnement quotidiennes, l'entreprise LELY conseille une limite de 60 vaches par robot, soit 2 robots pour le GAEC Caverre.

II.B – Adéquation du robot à l'investissement économique

II.B.1) Présentation de la problématique

L'implantation d'un système de traite automatique ne doit se faire qu'après une analyse financière complète permettant de vérifier la pérennité de l'exploitation agricole en fonction de facteurs tels que le prix d'achat initial, les évolutions du prix du lait, du volume produit par le troupeau, du nombre de salariés, etc.

L'étude qui suit propose de réaliser partiellement cette analyse dans le cas particulier du GAEC Caverre.

II.B.2) Détermination des charges dues au remboursement de l'emprunt

Le GAEC Caverre disposait antérieurement d'une salle de traite conventionnelle semi-automatique : sa vente a permis de limiter l'emprunt bancaire nécessaire à l'achat des deux robots à $S = 270\,000 \in$.

La durée d'amortissement et de remboursement de cette somme est de 7 ans (soit n = 84 mois), à un taux annuel de $t_a = 6$ % réparti de manière homogène : ainsi, chaque mois, la somme restant due est augmentée du taux mensuel $t_m = t_a/12$. La mensualité est notée m et elle est constante sur toute la durée du remboursement.

Q 2. Montrer que la somme restant à rembourser au mois k est $N_k = (1 + t_m)^k S - m \sum_{i=0}^{k-1} (1 + t_m)^i$. Après avoir précisé la valeur de N_n , déterminer l'expression de la mensualité m en fonction de t_m , S et n puis faire l'application numérique.

II.B.3) Détermination de la production maximale de lait

La plage de traite d'une vache débute par le vêlage (naissance d'un veau) et dure environ 10 mois à l'issue desquels la vache est isolée en attente d'un nouveau vêlage qui intervient deux mois après.

La figure 6 propose une modélisation de l'évolution de la production maximale de lait pour une vache de race Prim'Holstein sur la période séparant deux vêlages (12 mois). Afin de maintenir une production de lait constante sur l'année, les vêlages sont régulièrement décalés sur l'année.

Figure 6 Modélisation de l'évolution de la production maximale d'une vache Prim'Holstein entre deux vêlages

Q 3. Déterminer le volume maximal de lait produit par une vache entre deux vêlages (12 mois) en supposant un mois moyen de 30,4 jours.

II.B.4) Validation de la pertinence économique de l'implantation d'une salle de traite automatique dans le cas du GAEC Caverre

Afin de vérifier la pertinence de l'implantation d'un système de traite automatique dans le cas du GAEC Caverre, on se place dans le cas limite d'un achat minimal de $31 \notin$ l'hectolitre de lait (100 litres) assuré par la coopérative et d'une taille réduite du cheptel (animaux malades, vêlages décalés, etc.) à 100 vaches.

Le calcul précédent a été effectué pour une production maximale mais la production annuelle réelle par vache est inférieure. Elle est en moyenne de 8 000 litres en salle de traite manuelle et, grâce à l'augmentation du nombre de traites, de 20 % supérieure après installation des robots de traite.

Les frais de fonctionnement annuels dans une salle de traite manuelle sont de $200\,000 \notin$ mais de 15 % supérieurs avec les robots de traite à cause de l'augmentation de la consommation électrique, des frais d'entretien, de l'achat de consommables divers, etc. Les frais vétérinaires et la masse salariale dans une salle de traite manuelle sont respectivement de 5000 \notin et 24000 \notin et sont réduits à 1000 \notin (animaux moins malades, moins blessés, etc.) et à 0 \notin (plus d'ouvriers agricoles extérieurs) après l'implantation des robots de traite.

On supposera que $48\,000 \notin$ sont dus annuellement à la banque pendant les 7 années de remboursement du prêt. Au bout de 7 ans, les frais de fonctionnement augmentent de $30\,000 \notin$ par an du fait de l'usure du matériel et de la nécessité de maintenance, réglages, etc.

Q 4. Déterminer les revenus minimaux de chacun des trois associés du GAEC dans les trois situations suivantes : salle de traite manuelle, salle de traite automatique les sept premières années puis au delà. En déduire la perte de revenu occasionnée par l'investissement durant les sept premières années. Déterminer le nombre de mois nécessaires pour compenser cette perte à l'issue du remboursement. Conclure quant à la pertinence de l'implantation d'une salle de traite automatique dans cette configuration minimale.

II.C – Conclusion de cette partie

Cette partie a permis de mettre en évidence les conditions d'implantation d'un robot de traite automatique dans une exploitation de taille moyenne. Après quelques difficultés initiales, les deux robots installés au GAEC Caverre fonctionnent dorénavant parfaitement et l'évolution favorable du prix du lait a permis un remboursement de l'emprunt en un peu plus de cinq ans : la rentabilité de l'exploitation laitière est assurée.

III Analyse et justification de la structure cinématique du robot de traite LELY Astronaut A3

— Objectif

Justifier la structure cinématique adoptée pour le robot de traite afin que les vaches puissent être traites sans être heurtées lors des phases d'approche puis de connexion de la tête de traite.

III.A – Expansion fonctionnelle de la fonction technique FT31

L'expansion de la fonction technique FT31 « Positionner les différents organes nécessaires à la traite » (voir figure A du document réponse) fait apparaître trois sous-fonctions techniques présentées figure 7.

	FT311 Déplacer longitudinalement le chariot (1) par rapport au bâti (0)	$\underbrace{ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
FT31 Positionner auto- matiquement les organes nécessaires à la traite	FT312 Pivoter le bras supérieur (2) par rapport au chariot (1)	Vérins pneumatiques $[V21]$ et $[V22]$ + asservissement dédié
	FT313 Pivoter l'ensemble (34) par rapport au bras supérieur (2)	$\underbrace{ \begin{array}{c} \hline \\ V\acute{e}rin \text{ pneumatique } [V3] + \text{ asser-} \\ vissement d\acute{e}di\acute{e} \end{array} } $

Figure 7 Expansion de la fonction technique FT31

III.B – Cahier des charges fonctionnel associé aux fonctions techniques FT311, FT312 et FT313 Le cahier des charges dédié aux fonctions techniques FT211, FT212 et FT212 pour les trois auxes est précisé

Le cahier des charges dédié aux fonctions techniques FT311, FT312 et FT313 pour les trois axes est précisé figure 8. Sur ce tableau, les notes (a), (b), (c) et (d) signifient respectivement :

- a. le vérin [V2] correspond à un vérin virtuel équivalent à la mise en parallèle de deux vérins identiques [V21] et [V22] commandés simultanément (voir figure 9);
- b. la phase « hors box » correspond aux déplacements hors de la zone où se trouve la vache ;
- c. s(t) est la valeur de sortie de l'asservissement des axes 1, 2 ou 3 ;
- d. le critère de positionnement des axes 1, 2 ou 3 est défini sur une réponse indicielle par $\varepsilon_{\infty} = \lim_{t \to \infty} [e_0 s(t)]$ où e_0 est l'amplitude de l'échelon de consigne.

FTi	Critères associés	Niveaux
FT31	Inclinaison de la tête de traite par rapport à l'horizontale en position de traite	$>5^\circ$ pour permettre l'écoulement des fluides (lait, urine, produits de nettoyage, etc.)
	Distance parcourue par la tête de traite lors du contact avec le trayon avant de s'arrêter	< 2 cm dans toutes les directions à partir du contact (déformation maximale admissible du trayon)
FT311 FT312	Débattement linéaire assurés par les vérins assurant la mise en position de la tête de traite	2 m pour $[V1]$ 1 m pour $[V2]^{(a)}$ et $[V3]$
FT313	Vitesses maximales des vérins en déplacement hors box ^(b) ou en commande manuelle	70 cm \cdot s ⁻¹ pour le vérin [V1] 50 cm \cdot s ⁻¹ pour les vérins [V2] et [V3]
	Vitesses maximales des vérins en phase de positionnement précis de la tête de traite	6 cm \cdot s ⁻¹ pour le vérin [V1] 4 cm \cdot s ⁻¹ pour les vérins [V2] et [V3]
	Stabilité de l'asservissement des trois axes	Marges de phase $M\varphi > 60^{\circ}$ Marge de gain $MG > 10 dB$
	Amortissement de l'asservissement des axes	Aucun dépassement transitoire permis
	Sensibilité des trois axes aux perturbations	Axes 1, 2 et 3 : $\lim_{t \to \infty} s(t) = 0^{(c)}$
	Précision de l'asservissement des trois axes	Axes 1, 2 et 3: $\varepsilon_{\infty} = 0^{(d)}$
	Rapidité de l'asservissement des trois axes	Axe 1 : pulsation au gain à 0 dB $\omega_u = 10 \text{ rad} \cdot \text{s}^{-1}$ Axes 2 et 3 : temps de réponse à 5 % < 1 s

Figure 8 Cahier des charges partiel de la commande des axes 1, 2 et 3

III.C - Validation de la pertinence de la structure de positionnement de la tête de traite

III.C.1) Analyse de la structure cinématique

La cinématique du robot de traite peut être observée sur les photographies des figures 5 et 9.

Q 5. Tracer le schéma cinématique minimal en perspective de la structure mécanique retenue pour atteindre les trayons de la vache (ne pas représenter les actionneurs et utiliser plusieurs couleurs si possible). Proposer une autre structure cinématiquement équivalente qui aurait permis de répondre également à la problématique « approcher la tête de traite des trayons de la vache ».

III.C.2) Validation cinématique du risque de blessure de l'animal

La vitesse d'approche de la tête de traite doit être limitée afin que, en cas de contact, l'animal ne soit pas blessé. Des tests ont permis de vérifier que l'animal ne ressent pas de gêne si la vitesse de l'extrémité de la tête de traite entrant en contact avec le trayon reste inférieure à $10 \text{ cm} \cdot \text{s}^{-1}$ tout en s'arrêtant dans la limite définie par le cahier des charges (2 cm). On cherche à déterminer la vitesse au moment du contact dans le cas où les deux actionneurs [V2] et [V3] évoluent à leur vitesse maximale de 50 cm $\cdot \text{s}^{-1}$, évaluée sur site par pointage vidéo.

Le positionnement angulaire des bras (2) et (34) se faisant dans le plan de normale \vec{x}_0 , on fait évoluer le schéma cinématique de la figure 10 en un schéma « de mouvement » limité aux déplacements dans le plan de normale \vec{x}_0 . Dans ce cas, les liaisons sphériques et pivots sont remplacées par des articulations et les liaisons pivots glissants par des glissières et on obtient alors le schéma donné figure C du document réponse où la structure de positionnement a été dessinée dans la position particulière où la tête de traite rentre dans la zone où il peut se produire un contact avec un trayon de vache.

Figure 9 Robot en position « vérins de bras complètement sortis »

Figure 10 Modèle cinématique du robot étudié

 ${f Q}$ 6. En explicitant succinctement la démarche sur la copie et en effectuant les tracés sur la figure C du document réponse avec, si possible, plusieurs couleurs :

a. tracer la vitesse $\vec{V}(D,2/1)$ puis la vitesse $\vec{V}_F = \vec{V}(F,8/7) - \vec{V}(F,2/1)$;

b. en étudiant la chaîne fermée (1) - (2) - (34) - (8) - (7) - (1), montrer que $\vec{V}_F = \vec{V}(F, 34/2) - \vec{V}(F, 7/1)$;

- c. sur le document réponse, on donne le tracé de la vitesse $\vec{V}(F, 34/1)$ qui aurait également pu être obtenu à partir des relations précédentes : en déduire la position du Centre Instantané de Rotation $I_{34/1}$ de l'ensemble (34) par rapport au chariot (1) puis le tracé de la vitesse $\vec{V}(K, 34/1)$;
- d. conclure quant au risque de blessure de l'animal à cette vitesse maximale en commande manuelle $(50 \text{ cm} \cdot \text{s}^{-1})$; vérifier que le pilotage à la vitesse maximale en positionnement précis (4 cm $\cdot \text{s}^{-1}$: voir cahier des charges figure 8) permet de ne pas blesser l'animal.

III.C.3) Validation du modèle cinématique par mesure sur site

L'étude précédente a été réalisée sur un modèle cinématique plan du système à bras motorisés qui ne reflète probablement que partiellement la réalité : on propose donc de valider sa pertinence par une mesure sur site et une confrontation des résultats obtenus par la mesure et par l'étude sur le modèle.

Pour mesurer les évolutions réelles de la tête de traite, un téléphone muni d'un accéléromètre tridimensionnel (directions indiquées figure 11) a été utilisé. Après validation des données mesurées par l'accéléromètre, l'expérience a été réalisée sur un déplacement à vitesse constante et identique des deux vérins [V2] et [V3] de 50 cm \cdot s⁻¹, en pilotage manuel (sans asservissement) soit exactement dans les mêmes conditions que celles définies lors de l'étude de cinématique graphique.

L'accéléromètre du téléphone utilisé (modèle K3DH de STMicroelectronics) a une étendue de mesure selon les trois directions de ±19,6 m·s⁻², une résolution de 47,9. 10⁻⁴ m·s⁻² et une fréquence de mesure de 50 Hz, soit une période d'échantillonnage de $t_e = 20$ ms sur la durée $T_{mes} = 25$ s de la mesure.

Après import, les données mesurées par le téléphone sont disponibles sur l'ordinateur sous la forme d'une matrice à cinq colonnes composée des éléments M[i, j], où i est le numéro de la ligne (commençant à 1) et j est le numéro de la colonne (ici j est compris entre 1 et 5) (voir figure 12).

Avant de déterminer les courbes de vitesse à partir de ces courbes d'accélération, il est nécessaire de traiter le fichier de points car la technologie MEMS (MicroE-

lectroMechanical Systems) de l'accéléromètre utilisé est très sensible et produit des mesures très bruitées.

Afin de ne garder que l'évolution efficace, on décide de filtrer les mesures par un premier ordre de gain unitaire et de constante de temps $T_f = 50$ ms.

Le filtrage du signal brut M[i, j] (avec j = 3, 4 ou 5 pour les accélérations respectivement selon les directions \vec{x}_a, \vec{y}_a et \vec{z}_a) donne le signal filtré F[i, j] où i est le numéro de la mesure (comprise entre 1 et N) faite à l'instant $t = it_e$ avec t_e la période d'échantillonnage.

On suppose que, pour la première mesure, le signal filtré est égal au signal non filtré, soit M[1, j] = F[1, j].

Q 7. Montrer que la valeur du signal filtré F[i, j] à l'instant $t_i = it_e$ peut être approchée, si le pas de mesure t_e est suffisamment petit par rapport à l'évolution globale du système, par $F[i, j] \simeq \frac{t_e M[i, j] + T_f F[i - 1, j]}{t_e + T_f}$.

Écrire alors une procédure Maple ou Mathematica permettant d'obtenir les signaux filtrés F[i, j] à partir des données brutes M[i, j] $(1 \le i \le N$ et $3 \le j \le 5)$ en tenant compte de la période d'échantillonnage t_e , de la durée de la mesure T_{mes} et de la constante de temps T_f du filtre.

La figure 13 regroupe les courbes d'accélérations filtrées et non filtrées selon les trois axes de mesure de l'accéléromètre pour le déplacement de la tête depuis la position complètement sortie maintenue pendant 2 s (zone Z1) jusqu'à la position de traite maintenue pendant 4 s (zone Z2) puis retour à la position initiale maintenue pendant 4 s avant arrêt de la mesure (zone Z3, identique à la zone Z1).

Figure 13 Courbes d'accélération avant et après la procédure de filtrage numérique et positions des différents éléments de la structure cinématique dans les zones Z1, Z2 et Z3

Q 8. Sachant que l'accéléromètre mesure à la fois l'accélération due au déplacement de la tête de traite et l'accélération de la pesanteur, indiquer à quelles directions $(\vec{x}_a, \vec{y}_a \text{ ou } \vec{z}_a)$ correspondent les groupes de courbes filtrée / non filtrée GC1, GC2 et GC3.

Figure 11 Directions des mesures d'accélérations

 $\mathbf{m} \cdot \mathbf{s}^{-2} \mathbf{m} \cdot \mathbf{s}^{-2} \mathbf{m} \cdot \mathbf{s}^{-2}$

N	25	 	
2	40.10^{-3}	 •••	
1	20.10^{-3}	 	

 $t = it_e$

Figure 12 Structure du fichier des données brutes obtenues par l'accéléromètre du téléphone (période $t_e = 20$ ms)

Q 9. Déterminer, à partir des données de la figure 13, l'ordre de grandeur de l'angle d'inclinaison de la tête de traite défini par $i = (-\vec{g}, \vec{z}_a)$ dans les zones Z1, Z2 et Z3. Valider alors le critère d'inclinaison de la fonction de service FT31.

Lors de la phase d'approche, un contact peut se produire entre la tête de traite et le trayon de la vache juste avant la zone Z2, soit entre les instants t = 8 s et t = 10 s de la figure 13 (avant cet instant, la tête se trouve en dehors du box). Pour faciliter l'étude, on propose figure 14 une modélisation simplifiée de l'évolution des composantes suivant les directions \vec{y}_a et \vec{z}_a de l'accélération réelle de la tête de traite (la partie due à la pesanteur a été enlevée).

Une mesure avec le gyromètre intégré au téléphone (modèle K3G de STMicroelectronics) montre que, entre les instants t = 8 s et t = 10 s correspondant à la zone d'impact potentiel jusqu'à l'arrêt du système en position de traite, la vitesse de rotation du bras (34) dans le plan du déplacement est très faible (quelques dixièmes de degrés par seconde). Dans le calcul suivant, on néglige ce mouvement de rotation et on suppose donc que le bras (34) ne pivote pas par rapport au bâti dans la zone supposée d'impact et a donc un mouvement de translation.

Figure 14 Modèle simplifié des courbes d'accélérations filtrées de la tête de traite entre les instants t = 8 s (instant d'impact potentiel) et t = 10 s (arrêt du système en position de traite)

Q 10. Tracer l'allure des composantes de la vitesse de la tête de traite selon les directions \vec{y}_a et \vec{z}_a (on rappelle que, à partir de l'instant t = 10 s, la tête de traite est immobile). Vérifier alors si le résultat de la mesure et celui obtenu par l'étude cinématique à la question 6.c. sont compatibles.

III.D - Conclusion de cette partie

Cette partie a permis de mettre en évidence la nécessité d'un pilotage à vitesse faible des différents vérins lors de la phase d'approche de la tête de traite des trayons de la vache afin de ne pas blesser l'animal.

La comparaison des résultats obtenus par la mesure et l'étude sur le modèle a aussi permis de montrer la pertinence du modèle cinématique proposé qui sera donc utilisé dans la suite du sujet.

Par ailleurs, afin de positionner puis de maintenir en position précisément la tête de traite sous l'animal, il est nécessaire d'implanter une structure d'asservissement : c'est l'objet de l'étude proposée dans la partie suivante.

IV Lois de commande des axes pour le positionnement et le maintien en position de la tête de traite

— Objectif

Synthétiser des lois de commande assurant l'asservissement et la régulation de la position de la tête de traite lors d'une traite et, ce quels que soient les mouvements de la vache et les interactions entre la vache et le robot de traite Astronaut A3.

IV.A – Présentation de l'étude

L'étude des performances du robot de traite Astronaut A3 impose l'élaboration d'un modèle de connaissance afin de décrire son comportement. Ce modèle prend en compte le comportement dynamique du robot (à l'aide d'équations différentielles modélisant les différents mouvements du système de traite) et les relations liant les tensions d'alimentation des servo-distributeurs et les déplacements des tiges des vérins.

IV.B – Paramétrage de l'étude proposée

Les différentes données pour l'étude (schéma cinématique, données géométriques, cinétiques et d'efforts extérieurs) sont fournies sur les figures 10, 15, 16 et 17.

La perturbation la plus courante pour le système est un coup de patte de la vache sur la tête de traite, protégée en conséquence par une structure en fibre de carbone : la zone de contact étant réduite, on modélise cette action par un glisseur au point K de résultante $\vec{F}(\text{vache} \rightarrow 34) = F_x(t)\vec{x}_0 + F_y(t)\vec{y}_0 + F_z(t)\vec{z}_0$.

Par ailleurs, on note que $b_0(\vec{x}_0, \vec{y}_0, \vec{z}_0) = b_1(\vec{x}_0, \vec{y}_1, \vec{z}_1)$ grâce au guidage en translation de direction \vec{x}_0 du chariot (1) par rapport au bâti (0). L'accélération de la pesanteur est notée $\vec{g} = g\vec{y}_0$.

Q 11. En indiquant les ensembles isolés et les théorèmes utilisés, justifier qu'il est cohérent d'écrire les actions du vérin [V1] sur le chariot (1), du vérin [V2] sur le bras supérieur (2) et du vérin [V3] sur l'ensemble (34) sous les formes des trois glisseurs suivants :

- un glisseur en A de résultante $\vec{R}(10 \rightarrow 1) = F_{V1 \rightarrow 1}\vec{x}_0$ pour l'action du vérin [V1] sur le chariot (1);
- un glisseur en *D* de résultante $\vec{R}(6 \rightarrow 2) = F_{V2 \rightarrow 2}\vec{w}$ pour l'action du vérin [V2] sur le bras (2);
- et un glisseur en F de résultante $\vec{R}(8 \to 34) = F_{V3 \to 34}\vec{k}$ pour l'action du vérin [V3] sur l'ensemble (34).

Figure 15 Modèle simplifié adopté pour l'étude, sous l'action combinée du vérin équivalent [V2], composé du corps (5) et de la tige (6), et du vérin [V3], composé du corps (7) et de la tige (8)

Solide	Paramétrage géométrique	Paramétrage cinétique
Bâti (0)	Repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$	
Chariot (1)	Repère $R_1(A, \vec{x_0}, \vec{y_1}, \vec{z_1})$. $\overrightarrow{AE} = h\vec{y_1}$,	Centre de gravité G_1 . Masse m_1 .
	$AC = b\vec{y}_1 + c\vec{z}_1$ et $AG_1 = x_{G1}\vec{x}_1 + y_{G1}\vec{y}_1$.	
Bras supérieur (2)	Repère $R_2(A, \vec{x}_0, \vec{y}_2, \vec{z}_2)$. $\overrightarrow{AB} = L_2 \vec{z}_2$, $\overrightarrow{AD} = l_2 \vec{z}_2$, $\overrightarrow{AG_2} = d_2 \vec{z}_2$.	Centre de gravité G_2 . Masse m_2 . Moment d'inertie par rapport à l'axe $(G_2, \vec{x}_0) J_2$.
Ensemble (34)	$\overrightarrow{BK} = L_4 \vec{y}_{34} - l_4 \vec{z}_{34}, \overrightarrow{BG}_{34} = d\vec{y}_{34} - e\vec{z}_{34}.$	Centre de gravité G_{34} . Masse m_{34} . Moment d'inertie par rapport à l'axe $(G_{34}, \vec{x}_0) J_{34}$.
$[V1] = (9) \cup (10)$	Repère $R_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$	Masses et inerties des corps et des tiges des
$[V2] = (5) \cup (6)$	Repère $R_5(C, \vec{x}_0, \vec{v}, \vec{w})$	trois vérins supposées négligeables.
$[V3] = (7) \cup (8)$	Repère $R_7(E, \vec{x}_0, \vec{\jmath}, \vec{k})$	

Figure 16 Paramétrage géométrique et cinétique des solides

Modèle adopté	Paramétrage	Frottement visqueux complémentaire
$L_{1/0}$: glissière (direction \vec{x}_0)	$\overrightarrow{OA} = x(t)\vec{x}_0$	$F_{0\to1}^v = -f_{10}\dot{x}(t) \ (f_{10} \ \text{en N} \cdot \text{s} \cdot \text{m}^{-1})$
$L_{2/1}$: articulation (centre A)	$\theta(t) = (\vec{y}_1, \vec{y}_2) = (\vec{z}_1, \vec{z}_2)$	$C_{1\to 2}^v = -b_{21}\dot{\theta}(t) \ (b_{21} \ \text{en } \mathbf{N} \cdot \mathbf{m} \cdot \mathbf{s} \cdot \mathbf{rad}^{-1})$
$L_{34/2}$: articulation (centre B)	$\varphi(t) = (\vec{y}_2, \vec{y}_{34}) = (\vec{z}_2, \vec{z}_{34})$	$C_{2\to34}^v = -b_{32}\dot{\varphi}(t) \ (b_{32} \ \text{en N} \cdot \text{m} \cdot \text{s} \cdot \text{rad}^{-1})$

Modèle adopté	Paramétrage	Modèle adopté	Paramétrage
$L_{5/1}$: articulation (centre C)	$\alpha(t) = (\vec{y}_1, \vec{v}) = (\vec{z}_1, \vec{w})$	$L_{8/34}$: articulation (centre F)	$\psi(t) = (\vec{y}_{34}, \vec{j}) = (\vec{z}_{34}, \vec{k})$
$L_{7/1}$: articulation (centre E)	$\beta(t) = (\vec{y}_1, \vec{j}) = (\vec{z}_1, \vec{k})$	$L_{6/5}$: glissière (direction \vec{w})	$\overrightarrow{CD} = z_2(t)\vec{w}$
$L_{6/2}$: articulation (centre D)	$\gamma(t) = (\vec{y}_2, \vec{v}) = (\vec{z}_2, \vec{w})$	$L_{8/7}$: glissière (direction \vec{k})	$\overrightarrow{EF} = z_3(t)\vec{k}$

Figure 17 Caractéristiques des liaisons du modèle adopté avec et sans perte par frottement visqueux

IV.C – Mise en place de la stratégie d'étude du modèle proposé

Q 12. En se limitant exclusivement à l'utilisation des théorèmes généraux de la dynamique, expliciter, sur la figure B du document réponse, la stratégie d'isolements et de calculs à mettre en œuvre pour déterminer les expressions des actions mécaniques générées par les deux vérins [V1] et [V3]. Proposer alors une méthode pour déterminer l'action du vérin [V2] si on suppose connue l'action du vérin [V3].

IV.D – Étude de la fonction technique FT311

IV.D.1) Construction d'un modèle de connaissance de la commande de l'axe 1

a) Introduction

Les vérins implantés sur le robot de traite Astronaut A3 sont dotés d'un système électropneumatique destiné à l'asservissement et à la régulation de la position de sa tige. L'obtention d'un modèle liant la tension d'alimentation du servo-distributeur à la position du chariot (1) nécessite la modélisation du comportement de cette chaîne électropneumatique constituée d'une alimentation en air comprimé, de deux servo-distributeurs alimentant chacune des deux chambres d'un vérin pneumatique et de différents capteurs.

Le modèle associé au système électropneumatique nécessite de modéliser le comportement thermodynamique de chacune des chambres pneumatiques de volume variable ainsi que le comportement électromécanique du servo-distributeur. Ce modèle est non linéaire du fait de comportements complexes tels que la relation entre le débit massique et la pression dans la chambre. Afin de pouvoir synthétiser les lois de commande, il doit être linéarisé au voisinage du point de fonctionnement. Ce modèle linéarisé est fourni figure D du document réponse et, dans ce schéma-bloc, les différentes entrées et sorties sont les suivantes :

- $U_1(p) = L[u_1(t)]$ est la tension de pilotage du distributeur alimentant le vérin (en V);
- -X(p) = L[x(t)] est le déplacement de la tige du vérin [V1] (en m);

 $-F_x(p) = L[F_x(t)]$ est la composante selon \vec{x}_0 de l'action mécanique de l'animal sur la tête de traite (en N) ; Pour information, les grandeurs qui apparaissent dans la zone T sont les suivantes :

- $-\Delta P_V(p)$ est la différence de pression entre les deux chambres (en Pa) du vérin de section S (en m²);
- $-V_0$, P_0 et T_0 sont respectivement les valeurs à l'équilibre du volume (en m³), de la pression (en Pa) et de la température (en K) de l'air à l'intérieur du vérin, assimilé à un gaz parfait avec k le coefficient polytropique (sans unité) de l'évolution thermodynamique et r la constante thermodynamique (en J \cdot kg⁻¹ \cdot K⁻¹);
- G_u et C_P sont les coefficients de sensibilité du débit par rapport à la tension de commande (en m³·s⁻¹·V⁻¹) et par rapport à la variation de pression (en m³·s⁻¹·Pa⁻¹).
- b) Détermination de la loi de comportement dynamique de l'axe 1 (zone M de la figure D du document réponse)

Q 13. En utilisant la démarche proposée dans la question 12, montrer que l'évolution de la variable x(t) suit l'équation différentielle $M_{1Eq}\ddot{x}(t) + f_{1Eq}\dot{x}(t) = F_{V1\to1}(t) + F_x(t)$, les termes M_{1Eq} et f_{1Eq} devant être exprimés en fonction de données fournies dans les figures 16 et 17. Si on suppose les conditions initiales nulles, remplir, en fonction de M_{1Eq} , f_{1Eq} et p (variable symbolique de Laplace), la zone M de la figure D du document réponse. Cette structure de commande correspond-elle à un système asservi (justifier précisément la réponse apportée) ?

 $c) \ {\it Mise \ en \ place \ et \ \'evolution \ du \ modèle \ du \ système \ \'electro-pneumatique \ d\'edié \ `a \ la \ commande \ de \ l'axe \ 1}}$

Afin d'assurer un positionnement correct de la tête de traite, le déplacement du chariot (1) est mesuré en continu et, après comparaison avec la consigne de déplacement, une carte de commande génère le pilotage du vérin [V1]. La structure équivalente à retour unitaire est proposée sur la figure 18 : dans cette figure, la zone entourée en pointillé correspond à la figure D du document réponse (mêmes entrées $U_1(p)$ et $F_x(p)$ et même sortie X(p)) avec, pour information, $K_u = \frac{2SG_u}{C_p}$, $A = \frac{M_{1Eq}V_0}{krT_0C_p}$, $B = M_{1Eq} + \frac{f_{1Eq}V_0}{krT_0C_P}$, $C = f_{1Eq} + \frac{2S^2P_0}{rT_0C_p}$ et $D = \frac{V_0}{krT_0C_p}$.

Figure 18 Structure de l'asservissement en position de l'axe 1 (déplacement longitudinal)

IV.D.2) Synthèse de lois de commande dédiées à l'asservissement et à la régulation de la position de l'axe 1 (déplacement longitudinal de l'ensemble de traite)

a) Présentation de la problématique

Lors d'une traite, la vache dispose, du fait de la structure du box, d'une certaine liberté de mouvement selon la direction longitudinale du box, ce qui induit une variation de la position des trayons de la vache. Il est donc nécessaire d'adapter en continu la position de la tête de traite, d'autant que son positionnement sous la vache l'expose occasionnellement à des coups de patte générant des modifications de la position.

On utilise la structure de la figure 18 et on cherche à optimiser la structure du correcteur C(p).

b) Synthèse d'un correcteur à action proportionnelle : $C(p) = K_1$

On étudie tout d'abord le système en régulation : la consigne de déplacement x_C est donc maintenue à la valeur nulle et on va étudier la capacité du système à résister à une perturbation extérieure.

Q 14. À partir du schéma-bloc proposé sur la figure 18, exprimer la fonction de sensibilité vis-à-vis de la perturbation, définie par $H_P(p) = X(p)/F_x(p)$ en fonction de A, B, C, D, K_u et K_1 (rappel : $X_C(p) = 0$).

Lors de la traite, une des interactions envisagée entre la vache et le robot est l'application d'un coup de patte sur la tête de traite. On propose deux modélisations correspondant à deux cas rencontrés sur le système :

- un coup de patte violent, ressenti par le système comme un choc intense (quelques kN) mais d'une durée extrêmement faible (quelques ms) et modélisé par une impulsion de Dirac de surface A_0 (en N \cdot s);
- un appui continu par déplacement de l'animal, ressenti par le système comme un effort maintenu dans le temps et modélisé par un échelon d'amplitude F_0 (en N).

On suppose que le réglage du gain K_1 du correcteur maintient la stabilité du système.

Q 15. Un correcteur à action proportionnelle de gain K_1 permet-il de respecter le critère de sensibilité du cahier des charges si on considère successivement ces deux modélisations ? Proposer une action correctrice permettant d'annuler ce défaut de positionnement. Quelle performance risque alors d'être dégradée ?

On étudie maintenant le système en poursuite : la perturbation F_x est donc maintenue à la valeur nulle et on va étudier la capacité du système à suivre la consigne. La figure E du document réponse propose les tracés de la réponse fréquentielle de la boucle ouverte de cet asservissement et de l'évolution de la position x(t) du chariot (1) pour un échelon de position de 10 cm pour une correction unitaire $(C(p) = K_1 = 1)$.

Q 16. Déterminer la valeur du gain K_1 permettant de respecter la spécification de rapidité et en déduire la valeur de la marge de phase $M\varphi$ après réglage (indiquer les éléments de détermination sur le document réponse). Justifier l'impossibilité de valider le choix d'un correcteur à action proportionnelle, quelle que soit la valeur du gain K_1 .

c) Conclusion et études ultérieures possibles

L'utilisation de cette structure classique de correction ne permet pas de respecter les exigences du cahier des charges : pour atteindre cet objectif, on peut par exemple rajouter, en plus du retour en position, deux boucles internes de retour en vitesse et en accélération ce qui permet d'inverser la tension de commande suffisamment tôt, assurant une arrivée dans la position désirée sans dépassement. L'optimisation du réglage d'une telle structure suit une démarche assez complexe et longue qui n'est pas demandée dans le cadre de ce sujet.

IV.E – Étude des fonctions techniques FT312 et FT313

IV.E.1) Construction d'un modèle de connaissance de l'asservissement

a) Justification de l'étude proposée

L'asservissement des axes 2 et 3 est actionné dès l'entrée de la tête de traite dans le box afin de connecter les gobelets de façon efficace et rapide et de supporter les modifications de position latérale de la vache dans le box. Dans cette phase asservie, les mouvements se font dans de très faibles amplitudes autour de la position de référence correspondant à la position de traite et telle que $\theta = \theta_0 = -25^\circ$ et $\varphi = \varphi_0 = 13,4^\circ$ (valeurs mesurées sur site par l'accéléromètre du téléphone portable et une application dédiée).

b) Relations géométriques de positionnement de la tête

- En utilisant les données des figures 15 à 17, on peut montrer qu'on a :
- $z_2(t) = \sqrt{a_2 + b_2 \sin \theta(t) + c_2 \cos \theta(t)} \text{ avec } a_2, b_2 \text{ et } c_2 \text{ des grandeurs fonctions de } b, c \text{ et } l_2 \text{ : la longueur à la position de référence } (\theta = \theta_0 \text{ et } \varphi = \varphi_0) \text{ est notée } z_{20};$
- et $z_3(t) = \sqrt{a_3 + b_3 \sin \varphi(t) + c_3 \sin \theta(t) + d_3 \cos[\theta(t) + \varphi(t)]}$ avec a_3, b_3, c_3 et d_3 des grandeurs fonction de h, L_2 et L_3 : la longueur à la position de référence ($\theta = \theta_0$ et $\varphi = \varphi_0$) est notée z_{30} .

Q 17. Indiquer les deux relations vectorielles et les directions de projection (sans développer les calculs) qui permettraient d'obtenir les deux expressions précédentes.

Par ailleurs, la position du point K (coordonnées $y_K(t)$ et $z_K(t)$ dans le repère R_1) peut également être définie en fonction de $\theta(t)$ et $\varphi(t)$ donc en fonction de $z_2(t)$ et $z_3(t)$: le pilotage des deux vérins [V2] et [V3] permet donc un positionnement précis de la tête de traite dans le plan de normale $\vec{x}_0 = \vec{x}_1$.

c) Mise en place d'un modèle dynamique dans un cas simplifié

Comme mis en évidence précédemment, les deux axes doivent être gérés simultanément car les paramètres sont liés. Par ailleurs, les actions des vérins et de la vache sur la tête de traite ont des directions variables, ce qui implique des équations dynamiques fortement couplées et donc une structure de commande très complexe.

Afin de comprendre la problématique du pilotage, on propose une étude simplifiée.

Le bras supérieur (2) est maintenu fixe par rapport au chariot (1) sous l'action du vérin [V2] dans la position de référence ($\theta = \theta_0$ constante) et seul l'angle $\varphi(t)$ peut évoluer sous les actions du vérin [V3] et/ou de l'animal.

Q 18. En utilisant la démarche proposée à la question 12 et en détaillant la démarche de calcul, montrer que, dans le cadre de cette étude simplifiée, on a une relation de la forme générale

 $k_2\ddot{\varphi}(t) + k_1\dot{\varphi}(t) = L_3\cos\psi(t)F_{V3\to34}(t) + A_3(t)\sin[\theta_0 + \varphi(t)] + B_3(t)\cos[\theta_0 + \varphi(t)]$

avec $A_3(t) = a_{31}m_{34}g + a_{32}F_y(t) + a_{33}F_z(t)$ et $B_3(t) = b_{31}m_{34}g + b_{32}F_y(t) + b_{33}F_z(t)$, les termes $k_1, k_2, a_{31}, a_{32}, a_{33}, b_{31}, b_{32}$ et b_{33} devant être exprimés en fonction des données des figures 16 et 17.

L'évolution se fait dans de faibles amplitudes autour de la position de référence : on pose donc $\varphi^*(t) = \varphi(t) - \varphi_0$ et $z_3^*(t) = z_3(t) - z_{30}$, petites variations par rapport à la position de référence des paramètres $\varphi(t)$ et $z_3(t)$. En utilisant les valeurs numériques relevées directement sur le système, on constate que $\psi(t) \simeq \psi_0$ (la variation de cet angle est très faible dans la zone considérée et il sera donc considérée comme constant).

On pose $F_{V3}^*(t) = F_{V3\to 34}(t) - F_{V30}$ avec F_{V30} l'effort du vérin [V3] sur l'ensemble (34) à la position de référence en l'absence d'action mécanique de la vache sur la tête de traite $(F_y(t) = F_z(t) = 0 \text{ et } \varphi = \varphi_0)$.

Q 19. En considérant de petits mouvements au voisinage de la position d'équilibre et en supposant que les grandeurs $F_y(t)\varphi^*(t)$ et $F_z(t)\varphi^*(t)$ ont une influence négligeable sur l'évolution (ce point peut être vérifié par simulation), montrer que la relation de la question 18 peut s'écrire sous la forme générale

 $k_2\ddot{\varphi}^*(t) + k_1\dot{\varphi}^*(t) + k_0\varphi^*(t) = K_3F_{V3}^*(t) + K_yF_y(t) + K_zF_z(t)$

où k_0, K_3, K_y et K_z seront exprimés en fonction des longueurs L_3, L_4 et l_4 et des angles θ_0, φ_0 et ψ_0 .

d) Extension de l'étude à la problématique complète

L'étude précédente a été faite dans un cas particulier permettant d'obtenir une structure simple de l'asservissement, mais la réalité (commande couplée des deux axes et relations non linéaires) est bien plus complexe.

Le développement du calcul complet (équations géométriques justifiées à la question 17 et équations de la dynamique) permettrait d'obtenir un schéma-bloc de l'asservissement couplé des deux axes.

L'évolution se faisant à vitesse faible, les effets dynamiques sont négligés. Après linéarisation au voisinage de la position de référence ($\theta = \theta_0$ et $\varphi = \varphi_0$), on montre qu'on a alors les relations approchées suivantes :

- linéarisation des équations justifiées à la question 17 : $z_2^*(t) \simeq \rho_2 \theta^*(t)$ et $z_3^*(t) \simeq \rho_{31} \theta^*(t) + \rho_{32} \varphi^*(t)$

$$- \text{ équations dynamiques linéarisées}: \begin{cases} z_2^*(t) \simeq \lambda_{22} F_{V2}^*(t) + \lambda_{23} F_{V3}^*(t) + \mu_{22} F_y(t) + \mu_{23} \\ z_3^*(t) \simeq \lambda_{33} F_{V3}^*(t) + \mu_{32} F_y(t) + \mu_{33} F_z(t) \end{cases}$$

Q 20. On suppose les conditions initiales nulles. En utilisant les équations fournies, compléter les blocs vierges de la figure G du document réponse correspondant à la modélisation linéarisée de compensation de la position de la tête de traite au voisinage de la position de référence.

V Bilan des études menées et analyse de la capacité du système asservi à s'adapter aux mouvements de l'animal

V.A – Synthèse des activités

Q 21. Proposer une synthèse des activités menées.

V.B – Analyse des performances de l'asservissement des deux vérins [V2] et [V3] pour la gestion des mouvements latéraux de la vache

Pour finir, il reste à vérifier les performances de ce dispositif pour s'adapter aux mouvements de l'animal : une étude partielle est proposée dans la suite.

Une simulation du modèle cinématique permet de vérifier que l'écart entre les résultats obtenus avec les paramètres géométriques réels ($\varphi(t)$, $z_3(t)$, etc.) et ceux obtenus avec les paramètres linéarisés ($\varphi^*(t)$, $z_3^*(t)$, etc. à partir de la position de référence φ_0 , z_{30} , etc.) reste négligeable dans l'intervalle de déplacement latéral de l'animal qui est de ±15 cm. Par conséquent, le modèle linéarisé mis en place à la question 20 peut être utilisé pour évaluer la capacité du système à gérer les mouvements latéraux et/ou les actions de la vache en travaillant sur les grandeurs variationnelles.

La continuité de la traite lors des déplacements de la vache dans le box impose que les déplacements verticaux induits par l'asservissement de position restent inférieurs à 2 cm, ce qui correspond à la limite acceptable de déformation du trayon de la vache. Les courbes fournies figure F du document réponse représentent l'évolution de la position du point K (extrémité de la tête de traite) selon les directions $\vec{y}_0 = \vec{y}_1$ et $\vec{z}_0 = \vec{z}_1$ obtenues par simulation du modèle du système de positionnement de la tête de traite pour un déplacement latéral de l'animal de 10 cm sans action de sa part sur la tête de traite ($F_y(t) = F_z(t) = 0$ N).

Q 22. La commande implantée pour corriger les déplacements latéraux de la vache permet-elle de respecter la spécification de déformation maximale du trayon ? Indiquer clairement sur les courbes de la figure F du document réponse les éléments de détermination.

V.C – Conclusion

La structure cinématique adoptée permet à la fois un positionnement rapide de la tête de traite au niveau des trayons et une gestion très sûre des trajectoires. Par ailleurs, cette structure est naturellement très résistante aux coups de patte de l'animal, point crucial pour les producteurs de lait car une dégradation de la tête de traite impose un arrêt du robot pour maintenance.

$\bullet \bullet \bullet \operatorname{FIN} \bullet \bullet \bullet$

2.2	NOM :		
L C G	Prénom :		Signature :
	Épreuve de	$\mathbf{S2I} \text{ Filière } \mathbf{MP}$	
CONCOURS CENTRALE	•SUPÉLEC NUMÉRO DE PLACE	E	
Ne ri	ien porter sur cette feuille	avant d'avoir rempli complète	ement l'en-tête
FS1 Traire au- tomatiquement une vache à sa demande	FT1 Positionner la vache en position de traite par le robot		Box de traite + portes esca- motables d'entrée et de sortie
demande	FT2 Transmettre au robot les caractéris- tiques de la vache		Lecteur de badge RFID + plateau peseur + ordinateur
	FT3 Effectuer l'ac- tion de traite sur les trayons de la vache	FT31 Positionner les différents organes né- cessaires à la traite	Structure composée du chariot (1), du bras (2) et du bras (34) supportant la tête de traite
		FT32 Détecter la po- sition des trayons de la vache	Système à triangulation la- ser 3D + logiciel adapté
		FT33 Nettoyer les trayons de la vache avant la traite	Brosses rotatives désinfectantes + jets de vapeur haute pression
		FT34 Connecter les trayons de la vache au robot de traite	Gobelets + système de position- nement à vérins pneumatiques situé dans la tête de traite
	FT4 Stocker et ana- lyser en continu le lait prélevé		Cuve de réception intermédiaire + capteurs + balance dynamique
	FT5 Assurer une communication conti- nue avec l'utilisateur		Écran tactile de commande et de contrôle + retours visuels

Figure A Diagramme FAST du système étudié (les cases grisées correspondent à l'étude menée)

Effort à déterminer	Système à isoler	Théorème à utiliser + direction de projection	Justification des choix adoptés pour les isolements et les théorèmes utilisés
$F_{V1 \rightarrow 1}$			
$F_{V3 \rightarrow 34}$			

Pour $F_{V2\to2},$ on suppose que l'effort $F_{V3\to34}$ est connu par l'étude du tableau précédent.

Effort à	Système	Théorème à utiliser +	Justification des choix adoptés pour
déterminer	à isoler	direction de projection	les isolements et les théorèmes utilisés
$F_{V2 \rightarrow 2}$			

 ${\bf Figure} \ {\bf C} \quad {\rm D\acute{e}termination} \ {\rm graphique} \ {\rm de} \ {\rm la} \ {\rm vitesse} \ {\rm d'approche} \ {\rm de} \ {\rm la} \ {\rm t\acute{e}te} \ {\rm de} \ {\rm traite}$

Figure D Schéma-bloc associé à l'axe 1 du robot de traite (déplacement longitudinal de l'ensemble de positionnement de la tête de traite par rapport au bâti)

Figure E Réponse fréquentielle de la boucle ouverte (à gauche) et réponse temporelle du système asservi (à droite) pour une correction unitaire (C(p) = 1)

Figure F Simulation de l'évolution de la position de l'extrémité de la tête de traite suite à une perturbation (en abscisse des deux courbes : le temps en secondes)

Figure G Schéma-bloc de la commande linéarisée de positionnement de l'ensemble de traite au voisinage de la position de référence correspondant à $\theta = \theta_0$ et $\varphi = \varphi_0$