SESSION 2013 MPSI007

EPREUVE SPECIFIQUE - FILIERE MP

SCIENCES INDUSTRIELLES

Durée : 3 heures

N.B.: Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Les calculatrices sont autorisées

Le sujet comporte 19 pages dont :

- 15 pages de texte de présentation et énoncé du sujet,
- 1 livret de 4 pages de documents réponses à rendre obligatoirement avec la copie.

Toute documentation autre que celle fournie est interdite.

REMARQUES PRELIMINAIRES

Il est conseillé d'utiliser des feuilles de papier brouillon afin de mettre au point les développements mathématiques, schémas, graphes et courbes, avant de les recopier au propre sur la copie à rendre.

Il est demandé au candidat de bien vouloir inscrire les résultats et les développements nécessaires aux différentes questions sur sa copie, en précisant bien le numéro de la question traitée et, si possible, dans l'ordre des questions. Les résultats attendus seront obligatoirement encadrés.

Dimensionnement d'une roue autonome pour une implantation sur un fauteuil roulant

I Présentation

I.1 La roue autonome

Ez-Wheel SAS est une entreprise française de technologie innovante fondée en 2009. Elle propose une gamme de roues électriques "clé en main", 100 % intégrées.

La roue autonome ez-Wheel (prononcer "easy-wheel") propose une solution simple pour tracter des équipements de manutention et de transport de charges, des véhicules légers et matériels médicaux (figure 1). L'avantage de la solution ez-Wheel est d'être adaptable à la majorité des produits roulants qui existent sur le marché. Les dimensions et l'interface mécanique standardisées permettent une installation simple et immédiate. Le stator de la roue ez-Wheel est fixé sur le châssis de l'engin à déplacer et son rotor est assemblé directement sur sa roue.

Figure 1 – Exemples d'implantation de roue autonome

La solution intègre, au sein d'une roue, tous les composants nécessaires à la traction : la motorisation électrique, des batteries haute énergie de très longue durée de vie, un contrôleur de puissance assurant un pilotage optimal et la gestion de la batterie ainsi qu'une interface de commande sans fil. La transmission de l'énergie est réalisée par un variateur (incorporé à la carte de commande), un moteur brushless, puis un réducteur (figure 2, page 3).

Les produits ez-Wheel sont conçus pour un fonctionnement en intérieur ou extérieur sur une large gamme de température. Tous les composants, y compris la batterie, sont dimensionnés pour une durée de vie supérieure à 5 ans et ne nécessitent aucune inspection de maintenance. La technologie ez-Wheel permet de supprimer de l'engin tous les périphériques, câblages et connecteurs, facilitant considérablement l'intégration de la motorisation électrique par rapport aux solutions conventionnelles.

I.2 Mise en situation

Nous nous proposons, dans ce sujet, d'étudier l'implantation de la roue autonome sur un fauteuil roulant (figure 3). Pour ce genre d'application, où il est nécessaire de mettre en place

deux roues autonomes sur le fauteuil, la commande des roues n'est pas aussi simple que pour des applications à une seule roue. En effet, en plus de gérer le mouvement d'avance du fauteuil, il faut également gérer ses changements de direction. Les deux ez-Wheel étant implantées sur chacune des deux roues arrière, le pilotage des deux roues est lié afin de maîtriser la direction du fauteuil. Chacune des deux roues est alors asservie par l'intermédiaire de capteurs mesurant la vitesse de rotation de l'arbre du moteur brushless.

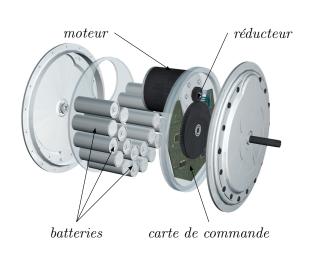


Figure 2 – Principaux éléments d'une roue ez-Wheel

Figure 3 – Prototype de fauteuil roulant équipé de deux ez-Wheel

II Analyse fonctionnelle

La figure 4 et le tableau 1, page 4, présentent un extrait du cahier des charges dans la phase de vie d'utilisation du fauteuil.

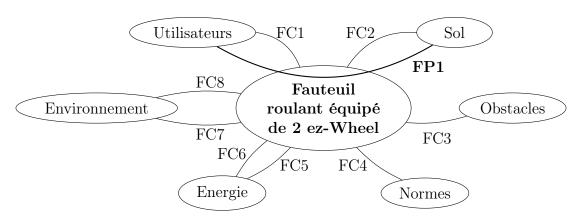


Figure 4 – Diagramme des interacteurs du fauteuil roulant équipé de deux ez-Wheel

Repère	Expression	Critères	Valeurs
FP1	Permettre à l'utilisateur de	Vitesse en ligne droite (km·h ⁻¹)	≤ 6
	se déplacer par rapport au	Rayon de courbure (m)	$0 \le \rho \le \infty$
	sol	Stabilité (pour une ez-Wheel)	
		• marge de phase (°)	≥ 45
		• marge de gain (dB)	≥ 15
		Précision	
		• erreur statique pour une vitesse de consigne V_{cons} (%) en ligne droite	± 10
		• erreur statique pour un rayon de consigne ρ_{cons} (%)	±3
		Dépassement sur la vitesse	Aucun
		Rapidité: temps de réponse à 5 % du fauteuil pour chaque consigne (s)	≤ 0.3
FC1	Recevoir les commandes de l'utilisateur	(Non étudié dans le sujet)	
FC2	S'adapter au sol	Coefficient de frottement béton sec/pneu	$0.75 \le f \le 0.85$
		Coefficient de frottement béton mouillé/pneu	f = 0.45
		Inclinaison du sol (%)	≤ 12
FC3	Franchir les obstacles	Hauteur d'une bordure (cm)	≤ 14
FC4	Respecter les normes	ISO 7176-2:2001	
FC5	Etre autonome en énergie électrique	Autonomie (heures)	≥ 24
FC6	Se recharger en énergie électrique	Raccord au secteur EDF	
FC7	Respecter l'environnement	(Non étudié dans le sujet)	
FC8	Résister à l'environnement	Etanchéité	

Tableau 1 – Extrait du cahier des charges

La figure 5 présente le SADT niveau A0 du fauteuil roulant équipé de deux roues autonomes ez-Wheel.

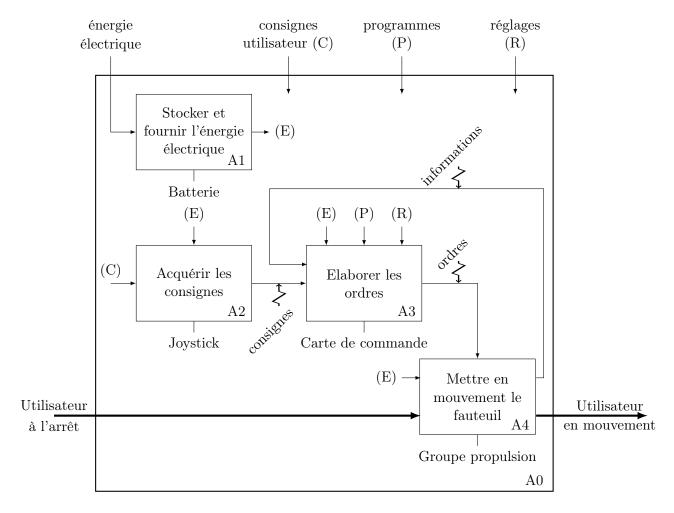


Figure 5 – Diagramme SADT niveau A0 du fauteuil roulant équipé de deux roues ez-Wheel

Le fonctionnement du fauteuil motorisé désiré par la société ez-Wheel est le suivant : l'utilisateur fournit une commande au système via un joystick. La carte de commande génère alors un ordre au variateur qui distribue une énergie électrique adaptée au moteur électrique. L'énergie mécanique de rotation fournie par le moteur électrique est alors adaptée et transmise aux roues. Afin d'assurer l'asservissement en vitesse des roues (et donc du fauteuil), des capteurs permettent de mesurer la vitesse de rotation sur l'arbre de sortie du moteur.

Q1. Réaliser le diagramme SADT niveau A-0 du système étudié.

Q2. Sur le document réponse 1, compléter le SADT niveau A4 relatif à la chaîne d'énergie du système (nom et fonction des sous-systèmes, nature des flux (représentés par \rightsquigarrow) et des matières d'œuvre entrantes et sortantes).

III Etude de la fonction FC2 : s'adapter au sol

Les différentes normes relatives à l'accessibilité des espaces publics aux personnes à mobilité réduite imposent certaines réalisations au niveau des accès des bâtiments. Les escaliers, infranchissables pour une personne en fauteuil roulant, doivent être remplacés ou complétés par des

rampes d'accès. Comme l'indique la figure 6, extraite des textes normatifs, ces rampes peuvent avoir une pente maximale de 12 % (soit environ 6,8°).

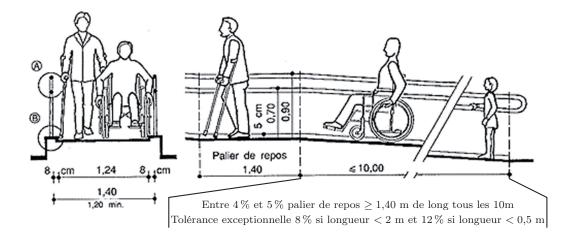


Figure 6 – Illustration des normes relatives aux accès des bâtiments pour les personnes à mobilité réduite

——Objectif -

Valider les performances du moteur vis-à-vis de la fonction FC2

La figure 7 (page 7), donne les dimensions du fauteuil motorisé et la figure 8 (page 7), le paramétrage de l'étude en phase de montée d'une pente.

Les hypothèses d'étude de cette partie sont :

- le référentiel $\mathcal{R}_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$, lié au sol, est supposé galiléen;
- le fauteuil se déplace en ligne droite dans une phase de montée, le problème est considéré comme un problème plan ;
- le référentiel $\mathcal{R}_f\left(O_f, \vec{x}_f, \vec{y}_f, \vec{z}_f\right)$ est lié au fauteuil avec $\vec{y}_0 = \vec{y}_f$;
- $\vec{g} = -g \vec{z_0}$ est l'action de la pesanteur avec $g = 9.81 \text{ m} \cdot \text{s}^{-2}$;
- le vecteur position du fauteuil est $\overrightarrow{OO_f}(t) = x(t) \vec{x}_f + R \vec{z}_f$;
- chaque moteur fournit le même couple, noté C_m (ils peuvent fournir 70 N·m au maximum);
- on supposera que le problème est équivalent à un seul moteur qui fournit un couple $2 C_m$ sur une seule roue arrière:
- l'ensemble $S = \{\text{fauteuil} + \text{roues motorisées} + \text{utilisateur}\}$ a une masse $M_S = 150$ kg, son centre d'inertie est G;
- le contact roue arrière/sol se fait avec frottement, on note f le coefficient de frottement;
- l'inertie des roues et celle du moteur sont négligées;
- l'inertie des roues étant faible devant les autres inerties, l'effort tangentiel (suivant \vec{x}_f) du sol sur les roues avant sera négligé;
- les roues arrière sont en liaison pivot d'axe (O_f, \vec{y}_f) par rapport au châssis du fauteuil;
- les liaisons autres que les liaisons roue/sol sont considérées comme parfaites.

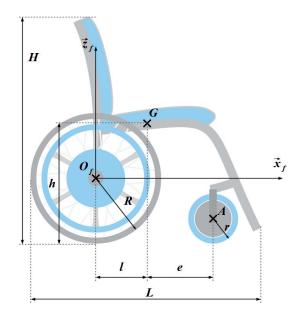


Figure 7 – Dimensions d'un fauteuil équipé de deux moteurs ez-Wheel

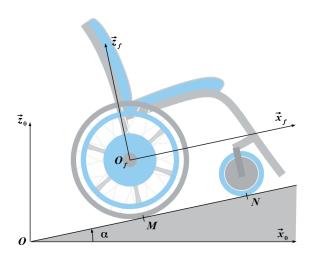


Figure 8 – Paramétrage de l'étude en phase de montée d'une pente

Les dimensions du fauteuil sont celles d'un fauteuil classique :

e = 400 mm

h = 600 mm

 $H = 1\,000 \text{ mm}$

l = 200 mm

 $L=1\,300~\mathrm{mm}$

r = 150 mm

R = 400 mm

Le torseur des actions mécaniques transmissibles par le solide i sur le solide j sera noté :

$$\{T_{i\to j}\} = \left\{ \begin{array}{c} \vec{\mathcal{R}} (i \to j) \\ \vec{\mathcal{M}} (A, i \to j) \end{array} \right\}_A = \left\{ \begin{array}{cc} X_A & L_A \\ Y_A & M_A \\ Z_A & N_A \end{array} \right\}_{A,\mathcal{R}}$$

- Q3. Donner les expressions des torseurs des actions mécaniques transmissibles en faisant apparaître les composantes nulles et le repère choisi :
 - a) du sol sur le fauteuil au niveau de la roue avant $\{T_{\text{sol}\rightarrow \text{roue avant}}\}$ au point N,
 - b) du sol sur le fauteuil au niveau de la roue arrière $\{T_{\text{sol}\rightarrow\text{roue arrière}}\}$ au point M,
 - c) et du poids sur le fauteuil $\{T_{\rm poids \to fauteuil}\}$ au point G.
- **Q4.** Donner l'expression du moment dynamique de l'ensemble S par rapport au référentiel \mathcal{R}_0 au point G noté $\vec{\delta}(G, S/\mathcal{R}_0)$.
- **Q5.** Ecrire les trois équations scalaires du principe fondamental de la dynamique appliqué à l'ensemble S en projection dans \mathcal{R}_f au point G.

Pour les questions $\mathbf{Q6}$ à $\mathbf{Q8}$, on suppose que le contact roue arrière/sol se fait à la limite du glissement.

Q6. En déduire l'accélération maximale du fauteuil $\ddot{x}(t)$ pour être à la limite du glissement. Faire l'application numérique pour une pente de béton mouillé de 12 % (f = 0.45).

- **Q7.** En appliquant le théorème du moment dynamique à la roue arrière, déterminer l'expression du couple moteur C_m en fonction de l'accélération $\ddot{x}(t)$. Faire l'application numérique dans les conditions de limite de glissement.
- Q8. Comparer avec la valeur du couple moteur du constructeur et justifier ce choix. Pour cela, déterminer l'expression littérale puis la valeur numérique de l'action mécanique du sol sur la roue avant.

On suppose, pour la question suivante, que le contact entre les roues arrière et le sol se fait toujours avec frottement mais qu'il n'est plus à la limite de glissement. On suppose, de plus, que le couple moteur est de $70~\rm N\cdot m$ sur chacune des roues.

Q9. Calculer l'accélération du fauteuil. Les moteurs, mis en place sur le fauteuil, permettent-ils de respecter les normes d'accès au bâtiment? Le fauteuil risque-t-il de basculer?

IV Etude de la fonction FC3: franchir les obstacles

Lors de ses déplacements en extérieur, l'utilisateur du fauteuil sera amené à franchir différents obstacles, notamment des bordures au niveau des passages piétons. Même si de nombreuses communes adoptent de plus en plus de passages abaissés pour faciliter le franchissement des fauteuils roulants, de nombreux passages restent encore réalisés avec des bordures classiques qui ont une hauteur d'environ 14 cm par rapport au niveau de la route.

——Objectif -

Déterminer la hauteur maximale d'une bordure que peut franchir la personne en fauteuil

La figure du document réponse 2 représente le fauteuil en position de franchissement d'obstacle. Les hypothèses d'étude de cette partie sont :

- le problème est plan;
- les roues avant sont décollées du sol (pas de contact en N) et sont en contact avec le trottoir en P;
- les frottements en M et P sont caractérisés par un coefficient de frottement f = 0.8;
- l'ensemble étudié $\mathcal{S}=\{\text{fauteuil} + \text{roues motorisées} + \text{utilisateur}\}$ a une masse $M_{\mathcal{S}}$;
- la roue arrière est en liaison pivot d'axe (O_f, \vec{y}_f) par rapport au châssis du fauteuil;
- la roue avant est en liaison pivot d'axe (A, \vec{y}_f) par rapport au châssis du fauteuil;
- les liaisons autres que les liaisons roue/sol sont considérées comme parfaites;
- étant données les faibles accélérations lors de la phase de franchissement de bordure, une étude statique sera menée.
- Q10. Déterminer et justifier la direction de l'action du sol sur la roue avant.
- Q11. Par une analyse de statique graphique, menée et justifiée sur le document réponse 2, montrer qu'il est impossible au fauteuil de franchir un tel obstacle.
- Q12. Proposer alors deux modifications portant sur la géométrie du système qui permettraient au fauteuil de franchir l'obstacle.

V Etude de la fonction FP1 : permettre à l'utilisateur de se déplacer par rapport au sol

Afin de commander le déplacement du fauteuil, l'utilisateur dispose d'un joystick (figure 9).

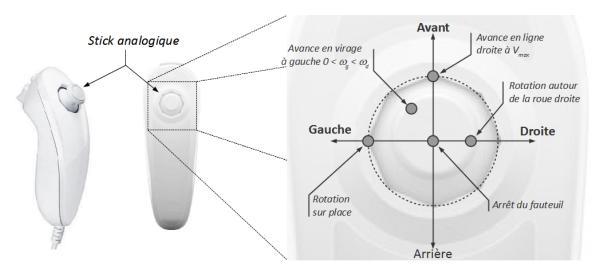


Figure 9 – Consignes de commande des roues en fonction de la position de la manette de commande

Cette manette de contrôle permet de piloter deux grandeurs (figure 10, page 10, et figure 11, page 11) :

- la vitesse du fauteuil, notée $V(t) = \|\vec{V}(O_f, \mathcal{R}_f/\mathcal{R}_0)\|$;
- le rayon de courbure du fauteuil, noté $\rho(t)$.

Les deux moteurs ez-Wheel sont asservis en vitesse de rotation.

-Objectif

Afin de vérifier les performances de la fonction **FP1**, les consignes en vitesse de rotation des deux moteurs seront reliées aux consignes du joystick. L'asservissement en vitesse d'un seul moteur sera modélisé et un correcteur permettant de vérifier le cahier des charges sera conçu.

V.1 Relation entre les consignes joystick et les consignes moteur

Les hypothèses de la modélisation du déplacement du fauteuil sont (figures 10 et 11):

- le mouvement du fauteuil sans les roues est un mouvement plan sur plan $(O, \vec{x}_0, \vec{y}_0)$ par rapport au référentiel fixe \mathcal{R}_0 . Le point O est le centre de courbure du mouvement du fauteuil;
- les deux roues arrière du fauteuil roulent sans glisser par rapport au référentiel fixe \mathcal{R}_0 ;
- la roue arrière gauche, notée \mathcal{R}_g , est en liaison pivot d'axe (O_g, \vec{y}_f) par rapport au châssis du fauteuil;
- la roue arrière droite, notée \mathcal{R}_d , est en liaison pivot d'axe (O_d, \vec{y}_f) par rapport au châssis du fauteuil;
- le rayon de courbure $\rho(t)$ est constant.

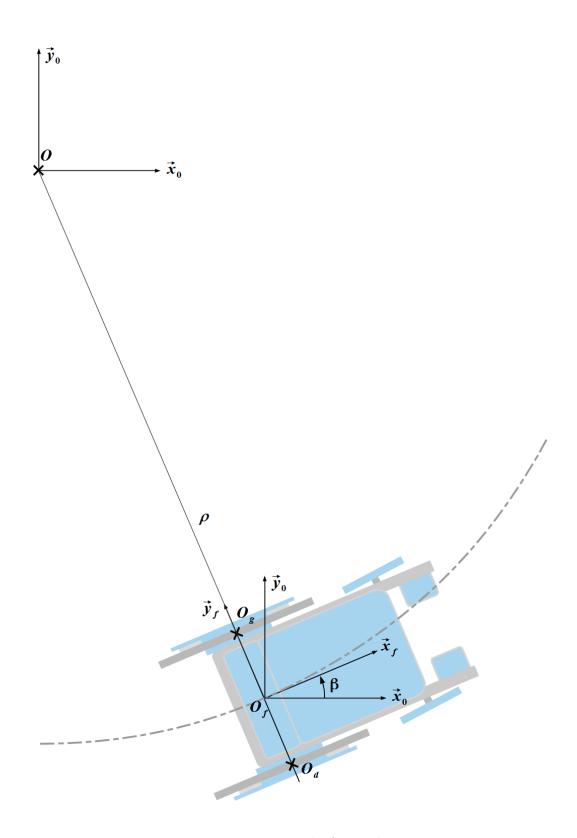


Figure 10 – Paramétrage du fauteuil en virage

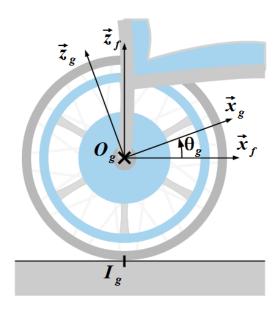


Figure 11 – Paramétrage de la roue gauche du fauteuil

Notations

- référentiel fixe : $\mathcal{R}_0(O, \vec{x}_0, \vec{y}_0, \vec{z}_0)$;
- référentiel lié au châssis du fauteuil : $\mathcal{R}_f(O_f, \vec{x}_f, \vec{y}_f, \vec{z}_f)$ avec $\vec{z}_0 = \vec{z}_f$;
- référentiel lié à la roue gauche : $\mathcal{R}_g\left(O_g, \vec{x}_g, \vec{y}_g, \vec{z}_g\right)$ avec $\vec{y}_f = \vec{y}_g$;
- référentiel lié à la roue droite : $\mathcal{R}_d\left(O_d, \vec{x}_d, \vec{y}_d, \vec{z}_d\right)$ avec $\vec{y}_f = \vec{y}_d$;
- $\vec{\Omega}(\mathcal{R}_f/\mathcal{R}_0) = \frac{\mathrm{d}\beta}{\mathrm{d}t} \vec{z}_0 = \dot{\beta} \vec{z}_0;$
- $\vec{\Omega}\left(\mathcal{R}_g/\mathcal{R}_f\right) = \omega_g \, \vec{y}_f = \frac{\mathrm{d}\theta_g}{\mathrm{d}t} \, \vec{y}_f = \dot{\theta}_g \, \vec{y}_f;$
- $\vec{\Omega}(\mathcal{R}_d/\mathcal{R}_f) = \omega_d \vec{y}_f = \frac{\mathrm{d}\theta_d}{\mathrm{d}t} \vec{y}_f = \dot{\theta}_d \vec{y}_f;$
- $\bullet \ \overrightarrow{OO_f} = -\rho \, \vec{y_f} \, ;$
- $\overrightarrow{O_dO_f} = \overrightarrow{O_fO_g} = \frac{a}{2} \vec{y_f}$ avec a = 700 mm, la largeur du fauteuil;
- I_g (respectivement I_d) est le point de contact entre la roue gauche (respectivement la roue droite) et le sol : $\overrightarrow{I_gO_g} = \overrightarrow{I_dO_d} = R \vec{z_0}$ avec R le rayon des roues arrière;

Q13. Donner:

- a) la valeur de ρ et la relation entre ω_g et ω_d lorsque :
 - la trajectoire du fauteuil est une droite;
 - le fauteuil tourne autour de l'axe (O_f, \vec{z}_0) ;
- b) les valeurs de ρ et ω_g lorsque le fauteuil tourne autour de l'axe $(O_g, \vec{z_0})$.

Q14. Ecrire trois expressions de $\vec{V}\left(O_f, \mathcal{R}_f/\mathcal{R}_0\right)$:

- a) en fonction de $R,\,a,\,\omega_g$ et $\dot{\beta}$ en utilisant le roulement sans glissement au point $I_g\,;$
- b) en fonction de R, a, ω_d et $\dot{\beta}$ en utilisant le roulement sans glissement au point I_d ;
- c) en fonction de ρ et $\dot{\beta}$.

Q15. En déduire les expressions de ω_g et ω_d en fonction de V(t), de ρ et des données géométriques du fauteuil.

V.2 Modélisation de l'asservissement en vitesse d'un moteur

Une roue ez-Wheel est composée d'un moteur brushless, d'un réducteur de rapport de transmission $\lambda = 5,25$ dont l'arbre de sortie est solidaire à une roue arrière du fauteuil roulant. Trois capteurs à effet Hall permettent de mesurer la vitesse de rotation de l'arbre moteur.

On modélisera le moteur brushless comme un moteur à courant continu :

$$u_m(t) = R_m i_m(t) + L_m \frac{\mathrm{d}i_m(t)}{\mathrm{d}t} + e_m(t)$$

$$J \frac{\mathrm{d}\omega_m(t)}{\mathrm{d}t} = c_m(t) - c_r(t)$$

$$c_m(t) = K_i i_m(t)$$

$$e_m(t) = K_e \omega_m(t)$$

où:

- u_m est la tension aux bornes de l'induit (en V);
- i_m est l'intensité circulant dans l'induit (en A);
- e_m est la tension contre-électromotrice (en V);
- ω_m est la vitesse de rotation de l'arbre moteur (en rad·s⁻¹);
- c_m est le couple moteur (en N·m);
- c_r est le couple résistant appliqué sur l'arbre moteur (en N·m);
- R_m est la résistance de l'induit $R_m = 0.18 \Omega$;
- L_m est l'inductance de l'induit, $L_m = 0.8 \text{ mH}$;
- J est la moitié de l'inertie équivalente de l'ensemble du fauteuil en charge et en mouvement ramené à un arbre moteur $J=0.5~{\rm kg\cdot m^2}$;
- K_i est la constante de couple du moteur $K_i = 0.2 \text{ N} \cdot \text{m} \cdot \text{A}^{-1}$;
- K_e est la constance de force contre-électromotrice $K_e=0,2$ V·s·rad⁻¹.

Les capteurs à effet Hall seront modélisés par un gain pur. La sortie du capteur de gain K_{cap} , notée m(t), est soustraite à la sortie de l'amplificateur qui permet de convertir la vitesse de consigne, notée $\omega_{cons}(t)$, en une tension de consigne $u_{cons}(t) = K_a\omega_{cons}(t)$. On prendra $K_{cap} = 0.2 \text{ V} \cdot \text{s} \cdot \text{rad}^{-1}$. L'écart obtenu est alors corrigé par un correcteur de fonction de transfert C(p) dont la sortie est la tension d'alimentation du moteur $u_m(t)$.

V.2.1 Modélisation

Notation: la transformée de Laplace d'une fonction temporelle f(t) sera notée F(p).

On suppose que le correcteur a pour fonction de transfert $C(p) = K_p$ avec $K_p \ge 0$.

Q16. Compléter, sur le document réponse 3, le schéma bloc modélisant l'asservissement en vitesse de rotation d'un moteur. Comment choisir le gain K_a pour que la vitesse angulaire de l'arbre moteur soit correctement asservie?

On note les fonctions de transfert $H_1(p)$ et $H_2(p)$ telles que :

$$\Omega_m(p) = H_1(p)\Omega_{cons}(p) - H_2(p)C_r(p).$$

Q17. Montrer que
$$H_1(p) = \frac{\frac{K_{cap}K_p}{K_e + K_{cap}K_p}}{1 + \frac{JR_m}{K_i(K_e + K_{cap}K_p)}p + \frac{JL_m}{K_i(K_e + K_{cap}K_p)}p^2}.$$

Q18. Donner l'expression canonique de $H_2(p)$ en fonction de K_{cap} , K_p , K_e , K_i , R_m , L_m et J.

V.2.2 Etude de la stabilité

Q19. Pour quelle(s) valeur(s) du gain K_p l'asservissement d'une roue est-il stable?

Dans la suite du problème, la perturbation sera négligée : $c_r(t) = 0$.

On note $FTBO(p) = \frac{M(p)}{\varepsilon(p)}$ la fonction de transfert en boucle ouverte du système.

Q20. Déterminer la forme canonique littérale de FTBO(p).

On prendra dans la suite du problème
$$FTBO(p) = \frac{K_p}{1 + 2.25p + 0.01p^2}$$
.

- **Q21.** Réaliser, sur le document réponse 4, le tracé asymptotique des diagrammes de Bode de la fonction de transfert en boucle ouverte pour $K_p = 1$. Pour le diagramme de gain, une division correspond à 10 dB et pour celui de la phase, à 45°. Indiquer les origines des axes des ordonnées. En déduire le tracé réel.
- **Q22.** Pour quelle(s) valeur(s) numérique(s) de K_p , la marge de gain du cahier des charges est-elle vérifiée?
- **Q23.** Pour quelle(s) valeur(s) numérique(s) de K_p , la marge de phase du cahier des charges est-elle vérifiée?

V.2.3 Etude de la précision

On donne $V(t) = \frac{R}{2} \left[\omega_g(t) + \omega_d(t) \right]$ où :

- V(t) est la vitesse du fauteuil;
- R est le rayon d'une roue arrière du fauteuil (R = 0.4 m);
- ω_q et ω_d les vitesses de rotation des roues arrière gauche et droite.

De plus, en ligne droite, $\omega_q(t) = \omega_d(t)$.

Dans cette partie de l'étude, le couple résistant est toujours négligé : $c_r(t) = 0$.

La fonction de Heaviside sera notée
$$u(t)$$
 telle que
$$\begin{cases} \forall t < 0, u(t) = 0 \\ \forall t \geq 0, u(t) = 1 \end{cases} .$$

Q24. Pour une entrée échelon, $\omega_{cons} = \omega_c u(t)$, donner la valeur finale de $\omega_m(t)$ en fonction de K_{cap} , K_p , K_e et ω_c . En déduire les valeurs de K_p qui permettent la validation du critère de précision de la vitesse du fauteuil imposé par le cahier des charges.

V.2.4 Etude de la rapidité et du dépassement

On notera m le coefficient d'amortissement et ω_0 la pulsation propre du dénominateur de $H_1(p)$.

Q25. Donner les expressions littérales de m et de ω_0 en fonction de K_{cap} , K_p , K_e , K_i , R_m , L_m et J. Donner leur expression numérique en fonction de K_p .

Q26. Quelle valeur de m permet d'obtenir une réponse de la roue la plus rapide sans dépassement? Quelle est alors la valeur numérique de K_p ?

Q27. A partir de l'abaque du document réponse 5, réaliser les tracés permettant de donner le temps de réponse à 5 % d'un moteur pour la valeur de K_p déterminée à la question précédente.

V.2.5 Bilan

On suppose que les deux moteurs ont le même comportement, celui modélisé précédemment.

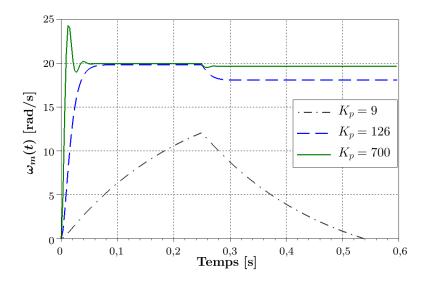
Dans cette question, on ne s'intéresse qu'à la consigne de vitesse du fauteuil sans perturbation.

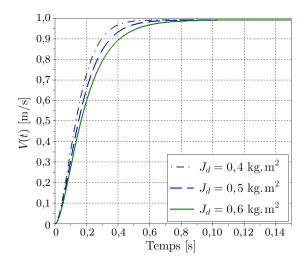
Q28. Proposer une valeur numérique de K_p qui permette de vérifier le cahier des charges de **FP1** en privilégiant le critère de rapidité.

V.2.6 Etude de l'effet de la perturbation sur une roue

Plusieurs simulations de la vitesse de rotation de l'arbre moteur $\omega_m(t)$ ont été réalisées pour des valeurs de gain K_p différentes et avec pour entrées $\omega_{cons}(t) = 300 \, u(t)$ (en rad·s⁻¹) et $c_r(t) = 50 \, u(t - \tau)$ (en N·m) avec $\tau = 0.25$ s (figure 12).

Q29. Expliquer la réponse obtenue par rapport aux trois performances (précision, dépassement et rapidité). Conclure quant au choix de la valeur de K_p de la question précédente.




Figure 12 – Simulation du comportement d'une roue

V.2.7 Validation du cahier des charges

Lorsque les roues sont placées sur le fauteuil, les inerties sur les roues gauches et droites ne sont pas bien maîtrisées car elles dépendent de la répartition des masses embarquées.

Une simulation de la réponse du fauteuil, V(t) et $\rho(t)$, est donnée par les figures 13 et 14 avec :

- une vitesse de consigne : $V_{cons}(t) = u(t)$ (en m·s⁻¹);
- un rayon de braquage de consigne : $\rho_{cons}(t) = 2 u(t)$ (en m);
- un couple résistant nul $c_r(t) = 0$ (sur la roue gauche et droite) :
- une valeur de gain $K_p = 126$;
- et pour différentes valeurs de l'inertie équivalente utilisée dans l'asservissement de vitesse de la roue droite (notée J_d). La valeur de l'inertie équivalente utilisée pour l'asservissement de la roue gauche reste inchangée $J_g = 0.5 \text{ kg} \cdot \text{m}^2$.

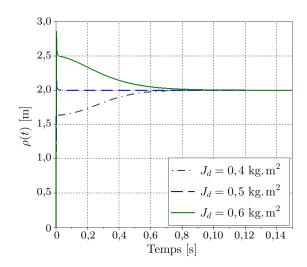
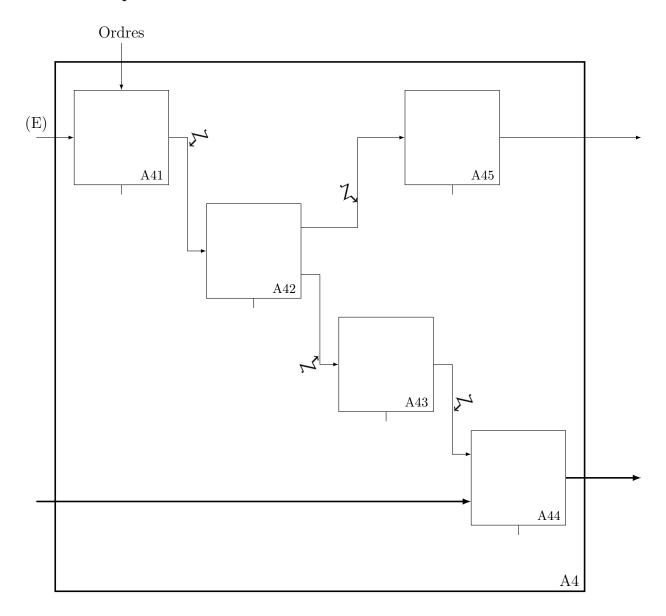
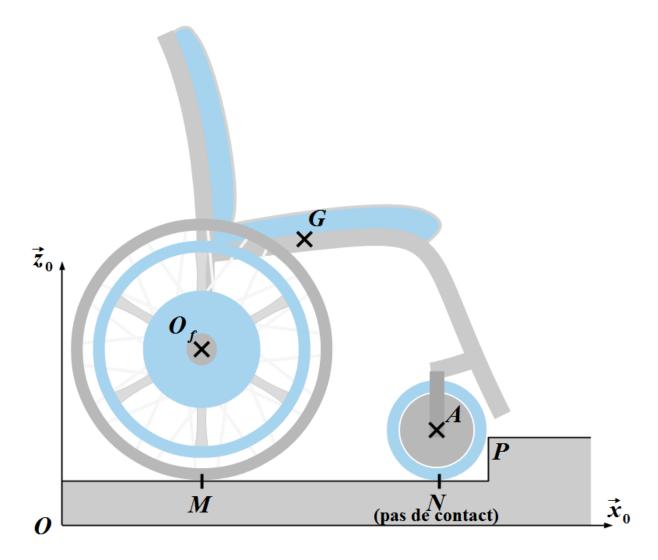


Figure 13 – Simulation du comportement en vitesse du fauteuil

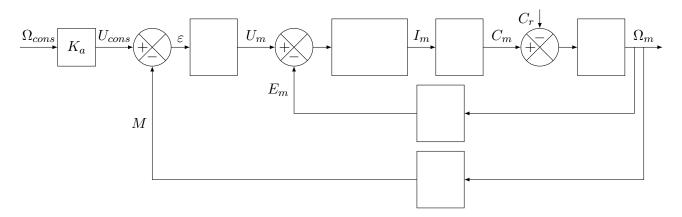

Figure 14 – Simulation du comportement du rayon de courbure du fauteuil

Q30. Expliquer physiquement la dépendance du temps de réponse à l'inertie des roues pour les deux réponses temporelles (vitesse et rayon de courbure). Expliquer alors pourquoi le rayon de courbure dépasse la consigne lorsque $J_d = 0.6$ kg·m² dans la simulation. Le cahier des charges est-il vérifié?

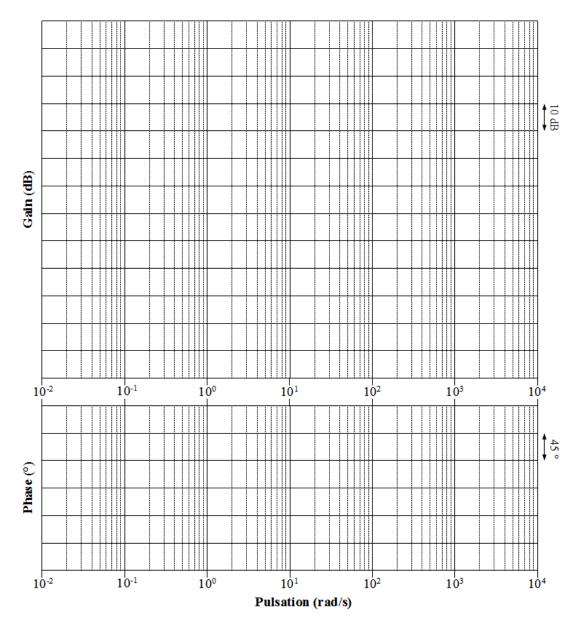

Fin de l'énoncé

DOCUMENT REPONSE A rendre avec la copie.

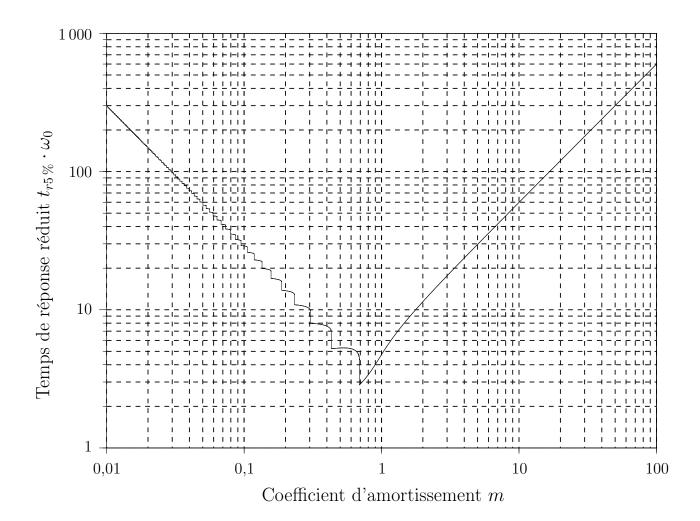
 ${\bf Document \ r\'eponse \ 1} : {\bf SADT \ niveau \ A4}$



Document réponse 2: franchissement d'obstacle: étude de statique graphique



Justifications:


Document réponse 3 : modélisation de l'asservissement en vitesse de rotation d'un moteur

Document réponse 4 : tracé asymptotique des diagrammes de Bode de FTBO(p) pour $K_p=1$

Document réponse 5 : rapidité du système

$$t_{r5\%} \cdot \omega_0 = t_{r5\%} =$$